Từ 1 điểm A nằm ngoài đường tròn (O;R)ta vẽ hai tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm).Trên cung nhỏ BC lấy 1 điểm M,vẽ M I ⊥ A B , M K ⊥ A C ( I ∈ A B , K ∈ A C ) a)Chứng minh:AIMK là tứ giác nội tiếp đường tròn. b)Vẽ MP ⊥ BC(P ⊥ BC).Chứng minh: Góc MPK = Góc MBC
a) Vì \(\hept{\begin{cases}MI\perp AB\\MK\perp AC\end{cases}\Rightarrow\hept{\begin{cases}\widehat{AIM}=90^0\\\widehat{AKM}=90^0\end{cases}}}\)
Xét tứ giác AIMK có \(\widehat{AIM}+\widehat{AKM}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác AIMK
\(\Rightarrow AIMK\)nội tiếp ( dhnb )
b) Vì \(MP\perp BC\Rightarrow\widehat{MPC}=90^0\)
Xét tứ giác MPCK có \(\widehat{MPC}+\widehat{MKC}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác MPCK
\(\Rightarrow MPCK\)nội tiếp ( dhnb)
\(\Rightarrow\widehat{MPK}=\widehat{MCK}\)(1)
Vì AC là tiếp tuyến của (O) tại C; BC là dây cung
\(\Rightarrow\widehat{MCK}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{MPK}=\widehat{MBC}\)
Thanks bạn