Cho tam giác đều ABC, đường cao AH. M là một điểm nằm giữa B và C( M khác điểm H)Kẻ MP vuông góc với AB, MQ vuông góc Với AC. Gọi O là trung điểm của AM. Cmr tứ giác OPHQ là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của BA
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
Ta có: DE//BC
M\(\in\)BC
Do đó: BM//DE
Ta có: \(DE=\dfrac{BC}{2}\)
\(CM=MB=\dfrac{CB}{2}\)
Do đó: DE=CM=MB
Xét tứ giác BDEM có
DE//MB
DE=MB
Do đó: BDEM là hình bình hành
c: Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔABC
=>\(MD=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MD=HE
Ta có: ED//BC
M,H\(\in\)BC
DO đó: ED//MH
Xét tứ giác DHME có
MH//DE
nên DHME là hình thang
Hình thang DHME có DM=HE
nên DHME là hình thang cân
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
Ta có: MN ⊥ AB
=> góc MNA = 900
MP ⊥ AC
=> góc MPA = 900
Xét tứ giác ANMP có:
góc MNA = góc MPA = góc NAP = 900
=> tứ giác ANMP là hình vuông
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành