Cho tam giác ABC vuông tại A , kẻ trung tuyến BM . Trên tia đối của tia MB lấy điểm D sao cho MD = MB . C/m
a. tam giác ABE = tam giác HBE
b. AB // CD
c. góc ABM > góc MBC
d. từ M kẻ MK vuông góc BC , c/m MA>MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó; ABCD là hình bình hành
Suy ra: AB=CD và AB//CD
hay AC⊥CD
Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.
a/ Xét t/g ABM vg tại A và t/g DBM vg tại D có
BM : chung
\(\widehat{ABM}=\widehat{CBM}\)
=> t/g ABM = t/g DBM
=> AB = BD
Mà \(\widehat{ABC}+\widehat{C}=90^O\) => \(\widehat{ABC}=60^o\)
=> t/g ABD đều
b/ t/g ABM = t/g DBM
=> AM = DM ; \(\widehat{BDM}=\widehat{BAC}=90^o\)
Suy ra t/g CMD vg tại D
=> MC > DM
=> MC > AM
c/ Xét t/g MAE vg tại A và t/g MDC vg tại D có
AM = MD
AE = DC
=> t/g MAE = t/g MDC
=> \(\widehat{AME}=\widehat{DMC}\)
Mà 2 góc này đối đỉnh
=> D,M,E thẳng hàng
a) Xét ΔABM vuông tại A và ΔDBM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))
Do đó: ΔABM=ΔDBM(cạnh huyền-góc nhọn)
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO
a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ACB}=65^o\)
b, Xét △ABM và △DCM
Có: MA = MD (giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(BM=MC\)(M là trung điểm của BC)
=> △ABM = △DCM (c.g.c)
=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // CD
c, Xét △IMB và △KMC
Có: \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)
BM = MC (gt)
\(\widehat{ABC}=\widehat{MCD}\)(cmt)
=> △IMB = △KMC (g.c.g)
=> MI = MK (2 cạnh tương ứng)
Mà M nằm giữa I, K
=> M là trung điểm của IK