K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 12 2023

Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:

$a=\frac{m}{2}; b=n-\frac{m}{2}$.

Khi đó:

$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.

$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:

$x(x-1)\vdots 2$

$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$

Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$

$\Rightarrow f(x)\in\mathbb{Z}$

Ta có đpcm.

8 tháng 8 2015

\(+f\left(0\right)=c\in Z\Rightarrow c\in Z\)

\(+f\left(2n\right)=4n^2.a+2n.b+c\in Z\Rightarrow n\left(4n.a+2b\right)\in Z\Rightarrow4n.a+2b\in Z\)với mọi số nguyên n.

\(+f\left(2n+1\right)=\left(4n^2+4n+1\right).a+\left(2n+1\right).b+c=\left(4n^2.a+2n.b\right)+\left(4n+1\right)a+b+c\in Z\) \(\Rightarrow\left(4n+1\right)a+b\in Z\)với mọi số nguyên n.

Suy ra: \(\left(8n+2\right)a+2b-\left(4n.a+2b\right)=\left(4n+2\right)a=\left(2n+1\right).2a\in Z\)với mọi số nguyên n

\(\Rightarrow2a\in Z\)

Mà \(4n.a+2b=2.2a+2b\in Z\)

\(\Rightarrow2b\in Z\)

Vậy \(2a,\text{ }2b,\text{ }c\in Z\)

 

 

17 tháng 5 2020

em ko biết

14 tháng 3 2019

 ai trả lời à

14 tháng 3 2019

ko ai trả lời dc à

17 tháng 2 2020

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\implies\) \(f\left(-x\right)=a.\left(-x\right)^2-bx+c\)

\(\implies\) \(f\left(-x\right)=a.x^2-bx+c\)

\(\implies\)\(f\left(x\right)+f\left(-x\right)=ax^2+bx+c+ax^2-bx+c\)

\(\implies\)\(f\left(x\right)+f\left(-x\right)=2.ax^2+2c\)

\(\implies\)\(f\left(x\right)+f\left(-x\right)=2.\left(ax^2+c\right)\) chia hết cho 2

\(\implies\)\(f\left(x\right)+f\left(-x\right)\) chia hết cho 2 với mọi số nguyên x

22 tháng 2 2019

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)

31 tháng 3 2016

Ta có:

\(f\left(1\right)=a+b+c\text{⋮7 }\)

\(f\left(2\right)=4a+2b+c⋮7\)

\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)

\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)

Mà \(3a+b⋮7\)

\(\Rightarrow c⋮7\)

Mà \(a+b+c⋮7\)

\(\Rightarrow a+b⋮7\)

Mà \(4a+2b+c⋮7\)

\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)

\(2\text{̸ ⋮̸7}\)

\(\Rightarrow2a+b⋮7\)

Mà \(a+b⋮7\)

\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)

Có \(a⋮7;c⋮7;a+b+c⋮7\)

\(\Rightarrow b⋮7\)

\(f\left(m\right)=am^2+bm+c\)

Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)

\(\Rightarrow a.x^2+bx+c⋮7\)

Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7

30 tháng 5 2020

\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên 

\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên 

\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên 

=> 4a có giá trị nguyên 

=> 2b có giá trị nguyên.