Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:
Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
ta có:\(a< b\Rightarrow4a< 4b\) và \(1< 3\)
\(\Rightarrow4a+1< 4b+3\)
Câu b tương tự nhưng nhớ đổi dấu khi nhân vs số âm
3a+5>3b+2
Ta có:
a>b => 3a>3b
=> 3a+5>3b+5
Lại có: 5>2
=> 3b+5>3b+2
=> 3a+5>3b+5>3b+2
Hay 3a+5>3b+2
a, vì a > b nên 3a > 3b => 3a + 2 > 3b + 2 (1)
Mà 3a + 2 < 3a + 5 (2)
Từ (1) và (2) suy vô ra : 3a + 5 > 3b+2 (đpcm)
b, vì a > b nên -4a < -4b => 2-4a < 2- 4b
mà 2-4b < 3-4b nên 2-4a < 3-4b
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
Cảm ưn 😆😊🥰🤩😽🙊🙈🙉