K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Từ gt suy ra a < b + c nên 2a < a + b + c = 2

\(\Rightarrow a< 1\).

Chứng minh tương tự: \(b< 1;c< 1\).

Do đó \(\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\Leftrightarrow abc< ab+bc+ca-1\) (Do a + b + c = 2)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca-1\right)=\left(a+b+c\right)^2-2=2\) (đpcm).

27 tháng 5 2015

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a² 
tương tự: bc+ab > b²; ca+bc > c² 
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*) 

gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)} 
=> 2 > a²+b²+c² (đpcm) 

đúng nha

2 tháng 11 2016

Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra: 1(a+b+c)+ab+bc+acabc>0
2(ab+bc+ac)>2+abc
2(ab+bc+ac)+a2+b2+c2>a2+b2+c2+2abc+2
Suy ra ĐCCM?

2 tháng 11 2017

Do a;b;c là 3 cạnh của tam giác nên: a + b + c = 2

Áp dụng bất đẳng thức của tam giác:

\(\Rightarrow\)a < b + c

\(\Rightarrow\)a + a < a + b + c

\(\Rightarrow\)2a < 2 \(\Rightarrow\)a < 1

Làm tương tự; ta chứng minh được b < 1; c < 1

\(\Rightarrow\)(1 - a)(1 - b)(1 - c) > 0

\(\Rightarrow\)(1 - a - b + ab)(1 - c) > 0

\(\Rightarrow\)1 - a - b + ab - c + ac + bc - abc > 0

\(\Rightarrow\)1 - (a + b + c) + (ab + ac + bc) > abc

\(\Rightarrow\)2[1 - (a + b + c) + (ab + ac + bc)] > 2abc

\(\Rightarrow\)2 - 2(a + b + c) + 2(ab + ac + bc) - 2abc > 0

\(\Rightarrow\)2abc + (a + b + c)^2 - 2ab - 2ac - 2bc < 2 (vì a + b + c = 2)

\(\Rightarrow\)\(a^2+b^2+c^2+2abc< 2\)(ĐPCM)

4 tháng 11 2017

CMR là chuẩn mẹ rồi!

khà khà.........................

14 tháng 2 2016

a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2

2ab+2ca+bc-2abc>2

 

15 tháng 2 2016

sao lại từ phần cần chứng minh nhân ra vậy.

Mà bạn làm mình ko hiểu

27 tháng 7 2017

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)