\(\frac{3}{1}\)x 4 + \(\frac{3}{4}\)x 7 + \(\frac{3}{7}\)x 10 + ..... + \(\frac{3}{197}\)x 200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
1 cách khác nó phức tạp và khó hơn "n" lần :)) Cơ mà nó chẳng khác của cậu là mấy :v
\(4+\frac{x}{1+\frac{1}{2+\frac{1}{3}}}=\frac{x}{4+\frac{1}{3+\frac{1}{2}}}\)
\(\Leftrightarrow4+\frac{x}{1+\frac{1}{\frac{7}{3}}}=\frac{x}{4+\frac{1}{\frac{7}{2}}}\)
\(\Leftrightarrow4+\frac{x}{1+\frac{3}{7}}=\frac{x}{4+\frac{2}{7}}\)
\(\Leftrightarrow4+\frac{x}{\frac{10}{7}}=\frac{x}{\frac{30}{7}}\)
\(\Leftrightarrow4+x.\frac{7}{10}=x.\frac{7}{30}\)
\(\Leftrightarrow4+\frac{7x}{10}=\frac{7x}{30}\)
\(\Leftrightarrow120+21x=7x\)
\(\Leftrightarrow120=7x-21\)
\(\Leftrightarrow120=-14x\)
\(\Leftrightarrow-\frac{120}{14}=-\frac{60}{7}=x\)
\(\Rightarrow x=-\frac{60}{7}\)
Tuấn Huỳnh cách của a có khác gì cách của e đâu.chỉ một bên chọn MSC còn a thì chuyển vế thôi mà
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\)TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\) TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\) TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\)
\(\frac{1}{7}x=\frac{2}{7}\) \(-\frac{1}{5}x=\frac{3}{5}\) \(\frac{1}{3}x=\frac{4}{3}\)
\(x=\frac{2}{7}\cdot7\) \(x=\frac{3}{5}\cdot-5\) \(x=\frac{4}{3}\cdot3\)
\(x=2\) \(x=-3\) \(x=4\)
Vậy x = 2 hoặc x = -3 hoặc x = 4
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(x\cdot\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{5}\right)=1\)
\(x\cdot\frac{5+3-24}{30}=1\)
\(x\cdot\frac{-8}{15}=1\)
\(x=1\cdot\frac{-15}{8}=\frac{-15}{8}\)
Vậy x = \(\frac{-15}{8}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
= \(x^8.\frac{1}{10}.\frac{2}{9}.\frac{3}{8}.\frac{4}{7}.\frac{5}{6}.\frac{6}{5}.\frac{7}{4}.\frac{8}{3}.\frac{9}{2}\)
= \(x^8.\frac{1}{10}.\left(\frac{2}{9}.\frac{9}{2}\right).\left(\frac{3}{8}.\frac{8}{3}\right).\left(\frac{4}{7}.\frac{7}{4}\right).\left(\frac{5}{6}.\frac{6}{5}\right)\)
= \(x^8.\frac{1}{10}.1.1.1.1\)
= \(x^8.\frac{1}{10}\)
Mk ko pik co dung ko nua
\(1)\frac{1}{2}x-\frac{3}{5}=\frac{-4}{5}\)
\(\Rightarrow\frac{1}{2}x=\frac{-4}{5}+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}x=\frac{-1}{5}\)
\(\Rightarrow x=\frac{-1}{5}:\frac{1}{2}=\frac{-1}{5}\cdot\frac{2}{1}=\frac{-2}{5}\)
\(\Leftrightarrow x=\frac{-2}{5}\)
\(2)3\frac{1}{5}-2\frac{1}{3}x=-1\frac{3}{5}+1\frac{7}{10}\)
\(\Rightarrow\frac{16}{5}-\frac{7}{3}x=-\frac{8}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{16}{5}-\frac{-8}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{16}{5}+\frac{8}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{24}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{48}{10}+\frac{17}{10}\)
Đến đây tìm được rồi nhé
3,4, áp dụng bài 1,2 rồi làm :v
Ta có
\(S=3.\left(\frac{1}{1}.4\right)+3.\left(\frac{1}{4}.7\right)+...+3.\left(\frac{1}{197}.200\right)\)
\(S=3.\left(\frac{1}{1}.4+\frac{1}{4}.7+\frac{1}{7}.10+...+\frac{1}{197}.200\right)\)