K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

 Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)

 Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\)

 Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\).  Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$

$=\frac{a^2}{a+1}$ với $x+y=a$

Áp dụng BĐT AM-GM:

$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$

$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$

$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$

Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$

20 tháng 5 2022

để x ko lá số dương cũng ko là số âm khi:

\(\dfrac{2a+5}{2}=0\\ 2a+5=0\\ 2a=-5\\ a=-\dfrac{5}{2}\)

vậy...

20 tháng 5 2022

có 3 trường hợp tất cả mà :v

a: x>0

=>2a+5<0

=>a<-5/2

b: x<0

=>2a+5>0

=>a>-5/2

c: x=0

=>2a+5=0

=>a=-5/2

22 tháng 6 2023

mik thank nhayeu

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

a. $x$ là số dương khi mà $x=\frac{3a-2}{4}>0$

$\Rightarrow 3a-2>0$

$\Rightarrow a> \frac{2}{3}$

b. 

$x$ là số âmkhi mà $x=\frac{3a-2}{4}<0$

$\Rightarrow 3a-2<0$

$\Rightarrow a< \frac{2}{3}$

c. $x$ không âm không dương

Tức là $x=\frac{3a-2}{4}=0$

Hay $a=\frac{2}{3}$

31 tháng 7 2023

a) Để \(X=\dfrac{3a-2}{4}\) là số dương

\(\Rightarrow3a-2\) lớn hơn 0 ( 4 là số dương)

\(\Rightarrow a\) lớn hơn \(\dfrac{2}{3}\)

b) Để \(X=\dfrac{3a-2}{4}\) là số âm

\(\Rightarrow3a-2\) nhỏ hơn 0 (vì 4 là số dương)

\(\Rightarrow a\) nhỏ hơn \(\dfrac{2}{3}\)

c) Để X không dương không âm

\(3a-2=0\)

\(\Rightarrow a=\dfrac{2}{3}\)