cho 2 số dương x;y thỏa mãn x2 + y2 = 1, tìm GTLN của biểu thức :
\(P=\dfrac{2xy+1}{x+y+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để x ko lá số dương cũng ko là số âm khi:
\(\dfrac{2a+5}{2}=0\\ 2a+5=0\\ 2a=-5\\ a=-\dfrac{5}{2}\)
vậy...
a: x>0
=>2a+5<0
=>a<-5/2
b: x<0
=>2a+5>0
=>a>-5/2
c: x=0
=>2a+5=0
=>a=-5/2
Lời giải:
a. $x$ là số dương khi mà $x=\frac{3a-2}{4}>0$
$\Rightarrow 3a-2>0$
$\Rightarrow a> \frac{2}{3}$
b.
$x$ là số âmkhi mà $x=\frac{3a-2}{4}<0$
$\Rightarrow 3a-2<0$
$\Rightarrow a< \frac{2}{3}$
c. $x$ không âm không dương
Tức là $x=\frac{3a-2}{4}=0$
Hay $a=\frac{2}{3}$
a) Để \(X=\dfrac{3a-2}{4}\) là số dương
\(\Rightarrow3a-2\) lớn hơn 0 ( 4 là số dương)
\(\Rightarrow a\) lớn hơn \(\dfrac{2}{3}\)
b) Để \(X=\dfrac{3a-2}{4}\) là số âm
\(\Rightarrow3a-2\) nhỏ hơn 0 (vì 4 là số dương)
\(\Rightarrow a\) nhỏ hơn \(\dfrac{2}{3}\)
c) Để X không dương không âm
\(3a-2=0\)
\(\Rightarrow a=\dfrac{2}{3}\)
Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)
Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\).
Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\). Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)
Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$
$=\frac{a^2}{a+1}$ với $x+y=a$
Áp dụng BĐT AM-GM:
$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$
$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$
$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$
$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$
Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$