Cho parabol (P) : y = \(\dfrac{1}{2}x^2\)và đường thẳng d:y=-x+m
a. Tìm m để d tiếp xúc với (P). Tìm tọa độ tiếp điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHĐGĐ là:
1/2x^2+x-m=0
Δ=1^2-4*1/2*(-m)=1+2m
Để (d) tiếp xúc (P) thì 2m+1=0
=>m=-1/2
=>1/2x^2+x+1/2=0
=>x^2+2x+1=0
=>x=-1
=>y=1/2*(-1)^2=1/2
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
Phương trình hoành độ giao điểm là:
\(-x^2=2mx+3-m\)
\(\Leftrightarrow-x^2-2mx-3+m=0\)
\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)
\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)
Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)
1. Ta có đồ thị :
2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)
Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)
- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow m=-1\)
3. Có phương trình hoành độ giao điểm :
\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)
\(\Rightarrow x=1\)
\(\Rightarrow y=1\)
Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)
a: Thay x=2 vào (P),ta được:
y=2^2/2=2
2: Thay x=2 và y=2 vào (d), ta được:
m-1+2=2
=>m-1=0
=>m=1
Phương trình hoành độ giao điểm là:
\(x^2-2x-m^2-m+3=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)
\(=4+4m^2+4m-12=4m^2+4m-8\)
\(=4\left(m+2\right)\left(m-1\right)\)
Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0
=>m=-2(loại) hoặc m=1(nhận)
giúp mình đi vẽ hộ cái hình
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
a,
Xét pt hoành độ giao điểm của (P) và (d): \(x^2+2x-2m=0\) (1)
\(\Delta=2^2-4\left(-2m\right)=4+8m\)
Để (d) tiếp xúc (P) thì pt (1) có nghiệm kép \(\Rightarrow\Delta=4+8m=0\)
\(\Rightarrow m=-\dfrac{1}{2}\)
Thay \(m=-\dfrac{1}{2}\) vào (1) \(\Rightarrow x^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2=0\) \(\Rightarrow x=-1\)
\(\Rightarrow y=\dfrac{1}{2}\left(-1\right)^2=\dfrac{1}{2}\)
Vậy (d) tiếp xúc (P) khi \(m=-\dfrac{1}{2}\) tại tọa độ \(\left(-1;\dfrac{1}{2}\right)\).