K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xet ΔOAB có OD/OA=OE/OB=1/2

nên DE/AB=OD/OA=1/2

Xet ΔOAC có OD/OA=OF/OC=1/2

nên DF/AC=OD/OA=1/2

Xet ΔOBC có OE/OB=OF/OC

nên EF//BC

=>EF/BC=OE/OB=1/2

=>DE/AB=DF/AC=EF/BC

=>ΔDEF đồng dạng với ΔABC

=>\(\dfrac{S_{DEF}}{S_{ABC}}=\dfrac{1}{4}\)

20 tháng 10 2020

Ta có: D; E lần lượt là trung điểm của OA; OB 

=> DE là đường trung bình của tam giác OAB 

=> DE = 1/2 AB 

Chứng minh tương tự: DF = 1/2 AC; EF = 1/2 BC 

=> DE + DF + EF = 1/2 AB + 1/2 AC + 1/2 BC = 1/2 (AB + AC + BC) = 1/2 . 20 = 10 cm

1 tháng 1 2022

Áp dụng định lí Ta lét đảo ta có:

\(\dfrac{OD}{OA}=\dfrac{OE}{OB}=\dfrac{OF}{OC}=\dfrac{1}{4}\Rightarrow DE\text{//}AB;EF\text{//}BC;DF\text{//}AC\\ \Rightarrow\dfrac{DE}{AB}=\dfrac{EF}{BC}=\dfrac{DF}{AC}=\dfrac{OD}{OA}=\dfrac{1}{4}\\ \Rightarrow\Delta ABC\sim\Delta DEF\left(c.c.c\right)\)

Tỉ số đồng dạng là: \(\dfrac{DE}{AB}=\dfrac{1}{4}\)

10 tháng 1 2019

Theo giả thiết D, E, F lần lượt là trung điểm các cạnh AB, BC và CA nên DE, EF, FD là các đường trung bình của tam giác ABC. Do đó, ta có:

DE = 1/2 AC,EF = 1/2 AB,FD = 1/2 BC (1)

Mặt khác, M là trung điểm của OA, P là trung điểm của OB, Q là trung điểm của OC, xét các tam giác OAB, OBC, OCA, ta cũng có:

MP = 1/2 AB,PQ = 1/2 BC, QM = 1/2 AC. (2)

Từ đẳng thức (1) và (2), ta suy ra :

DE = QM, EF = MP, FD = PQ.

Do đó ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy △ DEF đồng dạng  △ QMP theo tỉ số đồng dạng k = 1, trong đó D, E, F lần lượt tương ứng với các đỉnh Q, M, P.

25 tháng 8 2017

Cho tam giác đều ABC diện tích 80 cm2. Dựng một tam giác vuông cân BCD như hình vẽ.

do-ban-giai-duoc-bai-hinh-hoc-lop-8-ve-tam-giac

Sau đó lại lấy cạnh BD của tam giác vuông cân để dựng một tam giác đều. Cứ lặp đi lặp lại như vậy đến tam giác đều thứ 4.

Hỏi tam giác đều thứ 4 có diện tích bằng bao nhiêu?

Đáp án: 10 cm2.

Gọi cạnh tam giác đều ABC là a.

Áp dụng định lý Pytago vào tam giác vuông cân BCD ta có BD = CD = a√2/2

Nhận thấy, BD chính là cạnh của tam giác đều tiếp theo. Từ đó suy ra cạnh của tam giác đều tiếp theo luôn giảm √2/2 lần so với cạnh của tam giác đều trước đó.

Suy ra cạnh của tam giác đều thứ 4 giảm (√2/2)= √2/4 lần so với cạnh tam giác đầu tiên. Từ đây ta có diện tích tam giác đều thứ tư bằng (√2/4)= 1/8 lần so với diện tích tam giác đều đầu tiên.

Vậy diện tích tam giác đều thứ 4 bằng 80/8 = 10 cm2. 

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.a) Vì sao AD là đường kính của đường tròn(O)b) Tính góc ∠ACDc) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:a) Chu vi tam giác...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)

b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)

Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:

a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R

Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.

a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).

b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.

1
2 tháng 9 2020

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

DE//AB

=>OD/OA=OE/OB=DE/AB=1/3

EF//BC

=>EF/BC=OF/OC=OE/OB=1/3=OD/OA

OF/OC=OD/OA

=>DF//AC

=>DF/AC=OD/OA=1/3

Xet ΔDEF và ΔABC có

DE/AB=EF/BC=DF/AC

=>ΔDEF đồng dạng với ΔABC

=>k=ED/AB=1/3

3 tháng 7 2017

Lục giác DPEQFM có các cặp cạnh đối bằng nhau từng đôi một:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

DP = QF (vì bằng 1/2 OA);

PE = MF (vì bằng 1/2 OC)

EQ = MD (vì bằng 1/2 OB)

Lục giác DPEQFM có 6 cạnh bằng nhau chỉ khi DP = PE = EQ.

Muốn vậy, ta phải có OA = OB = OC, khi đó O là điểm cách đều ba điểm A, B, C. Vậy O là giao điểm của ba đường trung trực tam giác ABC.