\(A=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
trả lời nhanh mọi người ơi ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)
B=\(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}+\frac{3}{17.20}\)
\(\Rightarrow B=\frac{5-2}{2.5}+\frac{8-5}{5.8}+...+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)
\(b\)) \(Q=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
\(a\)) Mình giải theo cách khác:
Chú ý rằng : \(\frac{3}{2.5}=\frac{1}{2}-\frac{1}{5};\frac{3}{5.8}=\frac{1}{5}-\frac{1}{8};\frac{3}{8.11}=\frac{1}{8}-\frac{1}{11};...;\frac{3}{17.20}=\frac{1}{17}-\frac{1}{20}\)
Do đó: \(P=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+........+\frac{4}{65.68}\)
\(A=4\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{65.68}\right)\)
\(A=\frac{4}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..........+\frac{3}{65.68}\right)\)
\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-.........-\frac{1}{68}\right)\)
\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{68}\right)\)
\(A=\frac{4}{3}\left(\frac{34}{68}-\frac{1}{68}\right)\)
\(A=\frac{4}{3}.\frac{33}{68}\)
\(A=\frac{11}{17}\)
Sai đề => Sửa: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{20}\)
\(\Rightarrow\frac{9}{20}\)
\(S=\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{9}{20}\)
\(\Rightarrow S=\frac{3}{20}\)
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{17\cdot20}\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(S=\frac{1}{2}-\frac{1}{20}\)
\(S=\frac{9}{20}\)
\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=3.\left(1-\frac{1}{10}\right)\)
\(A=3.\frac{9}{10}=\frac{27}{10}\)
\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)
\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
A=...
<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)
\(7\frac{x}{2.5}+7\frac{x}{5.8}+.....+7.\frac{x}{17.20}=\frac{21}{10}\)
\(7\left(\frac{x}{2.5}+\frac{x}{5.8}+...+\frac{x}{17.20}\right)=\frac{21}{10}\)
\(\frac{x}{2.5}+\frac{x}{5.8}+...+\frac{x}{17.20}=\frac{21}{70}\)
\(\frac{x.3}{2.5.3}+\frac{x.3}{5.8.3}+...+\frac{x.3}{17.20.3}=\frac{21}{70}\)
\(x.\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\right)=\frac{21}{70}\)
\(x.\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{21}{70}\)
\(x.\frac{1}{3}.\frac{9}{20}=\frac{21}{70}\)
=> \(x=2\)
\(x=\frac{7x}{2}\)\(-\frac{7x}{5}+\)\(\frac{7x}{5}\)\(-\frac{7x}{8}\)\(+\frac{7x}{8}\)\(-\frac{7x}{11}\)\(+\frac{7x}{11}\)\(-\frac{7x}{14}\)\(+\frac{7x}{14}\)\(-\frac{7x}{17}+\)\(\frac{7x}{17}\)\(-\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x}{2}\)\(-\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.10}{20}\)\(+\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.10+7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.\left(10+2\right)}{20.2}\)\(=\frac{7x.12}{40}\)\(=\frac{21}{10}\)
\(=>\frac{7x.12:4}{40:4}=\)\(\frac{21}{10}\)
\(=>x=1\)
A=1/2 -1/5 +1/5 -1/8+...+1/17 -1/20=1/2 -1/20=9/20
yeah!
mình làm đúng rồi