Tìm nghiệm của đa thức
3x^3 -12x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
Ta có: 12x - 3x2 = 0
12x - 3xx = 0
12x - 3xx = 0
(12 - 3)xx= 0
9x2 = 0
x2 = 0:9
x2 = 0
➩ x = 0
Vậy x = 0 là nghiệm của đa thức (vì A(0)=0)
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
a: A(x)=-12x^3-2x^2+4x-6
Bậc là -12
Hệ số là -12;-2;4;-6
b: A(3)=-12*27-2*9+4*3-6=-336
A(-1)=-12*(-1)-2-4-6=12-12=0
=>x=-1 là nghiệm của A(x)
\(P\left(x\right)=x^2-5x-7x+35=x\left(x-5\right)-7\left(x-5\right)=\left(x-5\right)\left(x-7\right)\)
Nghiệm của đa thức là 5 hoặc 7
\(P\left(x\right)=x^2-12x+35=\left(x-7\right)\left(x-5\right)\)
\(\Rightarrow P\left(x\right)=0\Leftrightarrow\left(x-5\right)\left(x-7\right)=0\)
\(\Rightarrow x=5\)hoặc \(x=7\)
\(3x^3-12x=0\)
\(\Rightarrow x\left(3x^2-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)