cho tam giác MNP vuông tại M,đường cao MK
a.cm:tam giác MNK đồng dạng tam giác PNM
b.cm:tam giác KMN đồng dạng tam giác KPM và MK2=NK.PK
c.Trên tia KM lấy I là trung điểm MK,lấy J sao cho M là trung điểm JK
CM:PI vuông góc NJ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔKNM~ΔMNP
Xét ΔMNP vuông tại M và ΔKMP vuông tại K có
\(\widehat{P}\) chung
Do đó: ΔMNP~ΔKMP
=>ΔKNM~ΔMNP~ΔKMP
b: Ta có: ΔKNM~ΔKMP
=>\(\dfrac{KN}{KM}=\dfrac{KM}{KP}\)
=>\(KM^2=KN\cdot KP\)
c: ta có: NP=NK+KP
=4+9
=13(cm)
Ta có: \(KM^2=KN\cdot KP\)
=>\(KM^2=4\cdot9=36\)
=>\(KM=\sqrt{36}=6\left(cm\right)\)
Xét ΔMNP vuông tại M có MK là đường cao
nên \(S_{MNP}=\dfrac{1}{2}\cdot MK\cdot PN=\dfrac{1}{2}\cdot6\cdot13=39\left(cm^2\right)\)
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
góc N chung
=>ΔKNM đồng dạng với ΔMNP
Xét ΔKMP vuông tại K và ΔMNP vuông tại M có
góc P chung
=>ΔKMP đồng dạng với ΔMNP
b: ΔKNM đồng dạng với ΔKMP
=>KN/KM=KM/KP
=>KM^2=KN*KP
c: \(MK=\sqrt{4\cdot9}=6\left(cm\right)\)
\(S_{MNP}=\dfrac{1}{2}\cdot6\cdot13=3\cdot13=39\left(cm^2\right)\)
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a: Xét ΔMKH có MK=MH
nên ΔMKH cân tại M
b: Xét ΔKMN và ΔHMP có
MK=MH
\(\widehat{KMN}=\widehat{HMP}\)
MN=MP
Do đó: ΔKMN=ΔHMP
c: Ta có: ΔMKH cân tại M
mà MQ là đường trung tuyến
nên MQ là đường cao
a: Xét ΔNKM vuông tại K và ΔNKQ vuông tại K có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔNKM=ΔNKQ
b: Ta có: \(\widehat{KPM}=\widehat{KMN}\left(=90^0-\widehat{KMP}\right)\)
\(\widehat{KPM}< \widehat{KNM}\)
Do đó: \(\widehat{KMN}< \widehat{KNM}\)
Xét ΔKMN có \(\widehat{KMN}< \widehat{KNM}\)
mà KN,KM lần lượt là cạnh đối diện của các góc KMN,KNM
nên KN<KM
a: Xét ΔMKH có MK=MH
nên ΔMKH cân tại M
b: Xét ΔKMN và ΔHMP có
MK=MH
\(\widehat{KMN}=\widehat{HMP}\)
MN=MP
Do đó: ΔKMN=ΔHMP
c: Ta có: ΔMKH cân tại M
mà MQ là đường trung tuyến
nên MQ là đường cao