Cho tam giác ABC vuông góc tại A đường phân giác BI.Kẻ IH vuông góc BC tại H
a)Chứng minh: BI là đường trung trực của AH
b)Chứng minh: IA < IC
c) Gọi K là giao điểm của AB và HI
Chứng minh: BI vuông góc CK
d)Chứng minh: AH song song CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta\)ABC vuông tại A: \(BC^2\)=\(AB^2\)+\(AC^2\)(Pytago)
\(\Rightarrow\)\(BC^2\)=\(6^2+8^2\)=100
\(\Rightarrow\)BC=10 cm
b/ Xét \(\Delta\)ABI và \(\Delta\)HBI
^ABI=^HBI(phân giác BI)
^BAI=^BHI(=90 độ)
BI (chung)
\(\Rightarrow\)\(\Delta\)ABI=\(\Delta\)HBI(cạnh huyền-góc nhọn)
c/ BA=BH(cặp cạnh tương ứng)
\(\Rightarrow\)B \(\varepsilon\)đường trung trực của AH(1)
IA=IH(cặp cạnh tương ứng)
\(\Rightarrow\)I \(\varepsilon\)đường trung trực của AH(2)
từ (1)và(2)
\(\Rightarrow\)BI là đường trung trực của AH
d/ \(\Delta\)vuông HIC:
HI<IC(cạnh góc vuông<cạnh huyền)
mà HI=IA(cặp cạnh tương ứng)
\(\Rightarrow\)IA<IC
a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)
=> BC2 = 62 + 82
=> BC = \(\sqrt{6^2+8^2}\)
=> BC = \(\sqrt{100}\)= 10 (cm)
b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))
Cạnh huyền BI chung
=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)