K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

ảo à

đéo chứng minh được nhé

tự vẽ hình kiểm chứng đi

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

11 tháng 5 2022

a, Xét Δ ABC, có :

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)

=> \(3^2+4^2=BC^2\)

=> \(25=BC^2\)

=> BC = 5 (cm)

Xét Δ ABC vuông tại A, theo hệ thức lượng có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)

=> AH = 2,4 cm

b, Xét Δ ABD, có :

HD = HB (gt)

AH là đường cao

=> Δ ABD cân

17 tháng 5 2022

lol

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

18 tháng 11 2021

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

 

Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)

⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0  - 2. ∠ B (1)

Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.

⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .

⇒  ∆ KHE cân tại K ⇒  ∠ (EKH) =  180 0 - 2. ∠ (KHE) (2)

Tứ giác ADHE là hình chữ nhật nên:

HE // AD hay HE // AB ⇒  ∠ B =  ∠ (KHE) (đồng vị)

Từ (1), (2) và (3) suy ra:  ∠ (DIB) =  ∠ (EKH)

Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).

26 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)

⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0  - 2. ∠ B (1)

Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.

⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .

⇒  ∆ KHE cân tại K ⇒  ∠ (EKH) =  180 0 - 2. ∠ (KHE) (2)

Tứ giác ADHE là hình chữ nhật nên:

HE // AD hay HE // AB ⇒  ∠ B =  ∠ (KHE) (đồng vị)

Từ (1), (2) và (3) suy ra:  ∠ (DIB) =  ∠ (EKH)

Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).

26 tháng 4 2020

cho tam giác ABC và 3 điểm A',B',C' lần lượt nằm trên 3 cạnh BC,AC,AB ( A',B',C' không trùng với các đỉnh của tam giác )

Khi đó ta có : AA',BB',CC' đồng quy \(\Leftrightarrow\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)

A B C A' B' C'

26 tháng 4 2020

A B C H E M D P

Gọi P là giao điểm của AD và BE

Áp dụng định lí Ceva vào \(\Delta ABE\),ta có :

\(\frac{BP}{PE}.\frac{HE}{AH}.\frac{AM}{BM}=1\Rightarrow\frac{AH}{HE}=\frac{BP}{PE}\Rightarrow PH//AB\)

\(\Rightarrow\widehat{BAD}=\widehat{DPH}\)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{DAH}=\widehat{PDH}\Rightarrow\Delta AHP\)cân tại H

\(\Rightarrow HP=AH\)

Cần chứng minh \(DP//CE\Leftrightarrow\frac{BD}{BC}=\frac{BP}{BE}\Leftrightarrow\frac{BD}{BC}=1-\frac{EP}{BE}\)

Ta có : \(\frac{EP}{BE}=\frac{HP}{AB}=\frac{AH}{AB}=\frac{HD}{BD}\)

Khi đó : \(\frac{BD}{BC}=1-\frac{HD}{BD}\Leftrightarrow\frac{BD}{BC}+\frac{HD}{BD}=1\Leftrightarrow BD^2+HD.BC=BC.BD=\left(BD+DC\right).BD\)

\(\Rightarrow HD.BC=CD.BD\Rightarrow\frac{HD}{BD}=\frac{CD}{BC}\Leftrightarrow\frac{AH}{AB}=\frac{CD}{BC}\)

Ta có : \(\widehat{CDA}=\widehat{DBA}+\widehat{BAD}=\widehat{CAH}+\widehat{DAH}=\widehat{CAD}\)

\(\Rightarrow\Delta CAD\)cân tại C \(\Rightarrow CD=CA\)

Từ đó suy ra : \(\frac{AH}{AB}=\frac{AC}{BC}\)    ( đúng vì \(\Delta AHB~\Delta CAB\left(g.g\right)\))

Vậy ta có đpcm

15 tháng 8 2023

Xét tứ giác AEHD, có:
∠A = ∠E = ∠D = 90°
=> tứ giác AEHD là hình chữ nhật.

O là giao điểm hai đường chéo hcn AEHD
=> OD = OH (1).

DI là đường trung tuyến ứng với cạnh huyền của Δ vuông DHB
=> DI = 1/2 BH = IH (2).

Xét Δ IDO và Δ IHO, có:
OD = OH (1).
OI là cạnh chung.
DI = IH (2).
=> Δ IDO = Δ IHO (đpcm).

(bồ xem thử ổn hông nhe).

 

30 tháng 6 2017

Hình chữ nhật

11 tháng 12 2021

cho tam giác ABC vuông tại A đường cao AH ( H thuộc cạnh BC) .gọi D, E theo thứ tự chân đường vuông góc kẻ từ H đến AB và AC .Gọi M, N theo thứ tự là trung điểm của BH và CH .Gọi I là giao điểm của AH và ED 

1: cm tam giác DHE là tam giác vuông.Biết AB=3,AC=4, tính 

a: bán kính của đường tròn ngoại tiếp tam giác DHE 

b: cos ACH

2: cm ED là tiếp tuyến của đường tròn đg kính CH

3: cm I thuộc đg tròn đg kính Mn