\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+............+\frac{2.x}{x.\left(x+1\right)}=\frac{2005}{2017}\)
giải hộ nhé mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=1-1\frac{1991}{1993}=\frac{1991}{1993}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1991}{1993}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{1993}:2=\frac{1991}{3986}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1991}{3986}=\frac{1}{1993}\)
=> x + 1 = 1993
=> x = 1993 - 1
=> x = 1992
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x+\left(-1\right)-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-\frac{3}{2}x=1-\frac{1}{3}-\frac{5}{6}\)
\(x.\left(-5-\frac{1}{2}-\frac{3}{2}\right)=\frac{-1}{6}\)
\(x.\left(-7\right)=\frac{-1}{6}\)
x=\(\frac{1}{42}\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
Đặt N=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+......+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+\(\frac{2}{4.5}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)