Gieo 1 con xúc xắc 2 lần.Tính xác suất sao cho: A) Tổng số chấm 2 lần gieo bằng nhau b) tổng số chấm chia hết cho 2 c)tổng số chấm bé hơn 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A={(1;1); (1;2); ...; (1;6)}
=>n(A)=6
P(A)=6/36=1/6
b: B={(1;4); (2;3); (3;2); (4;1)}
=>P(B)=4/36=1/9
c: C={(3;1); (4;2); (5;3); (6;4)}
=>P(C)=4/36=1/9
d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}
=>P(D)=9/36=1/4
a: n(omega)=36
A={(1;5); (2;5); (3;5); (4;5); (5;5); (6;5)}
=>n(A)=6
=>P(A)=6/36=1/6
b: B={(1;6); (2;5); (3;4); (4;3); (5;2); (6;1)}
=>n(B)=6
=>P(B)=1/6
d: D={(2;1); (2;2); ...; (2;6); (3;1); (3;2); ...;(3;6);(5;1); (5;2);...;(5;6)}
=>P(D)=18/36=1/2
a: A={2}
omega={1;2;3;4;5;6}
=>P(A)=1/6
b: B={2;4;6}
=>n(B)=3
=>P(B)=3/6=1/2
c: C={3;4;5;6}
=>n(C)=4
=>P(C)=4/6=2/3
A={(1;2); (1;5); (2;4); (2;1); (3;3); (3;6); (4;2); (4;5); (5;1); (5;4); (6;3); (6;6)}
=>n(A)=12
n(omega)=36
=>P(A)=12/36=1/3
Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = {6^2}\)
a) Gọi biến cố A “Tổng số chấm xuất hiện lớn hơn hoặc bằng 10” là biến cố đối của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10”
A xảy ra khi số chấm xuất hiện là 5 hoặc 6. Số kết quả thuận lợi cho A là \(n(A) = {2^2}\)
Xác suất của biến cố A là \(P(A) = \frac{{{2^2}}}{{{6^2}}} = \frac{1}{9}\)
Vậy xác suất của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10” là \(1 - \frac{1}{9} = \frac{8}{9}\)
b) Gọi biến cố A: “Tích số chấm xuất hiện không chia hết cho 3” là biến cố đối của biến cố ‘“Tích số chấm xuất hiện chia hết cho 3”
A xảy ra khi mặt xuất hiện trên hai con xúc xắc đều xuất hiện số chấm không chia hết cho 3. Số kết quả thuận lợi cho A là: \(n(A) = {4^2}\)
Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{{4^2}}}{{{6^2}}} = \frac{4}{9}\)
Vậy xác suất của biến cố “Tích số chấm xuất hiện chia hết cho 3” là \(1 - \frac{4}{9} = \frac{5}{9}\)
Số phần tử của không gian mẫu là \(n\left( \Omega \right) \ = {6^2}\; =36 \) .
a) Gọi A là biến cố: “Tổng số chấm trên hai con xúc xắc bằng 8”
Ta có \(A = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\) suy ra \(n\left( A \right) = 5\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}\)
b) Gọi B là biến cố: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”
Gọi C là biến cố: “Tổng số chấm trên hai con xúc xắc lớn hơn 8”
\(C = \left\{ {\left( {3;6} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\) suy ra \(n\left( C \right) = 10\)
Ta có: \(n\left( B \right) = n\left( \Omega \right) - n\left( A \right) - n\left( C \right) = 21\)
Vậy xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).
Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = \left\{ {(i,j)|i,j = 1,2,3,4,5,6} \right\}\)trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n(\Omega ) = \;36.\)
a) Gọi A là biến cố “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.
Các kết quả có lợi cho A là: (4; 6) (5;5) (5;6) (6; 4) (6;5) (6;6). Vậy \(n(A) = \;6.\)
Vậy xác suất của biến cố A là \(P(A) = \;\frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}.\)
b) Gọi B là biến cố “Mặt 1 chấm xuất hiện ít nhất một lần”.
Các kết quả có lợi cho B là: (1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6) (2 ; 1) (3;1) (4; 1) (5;1) (6;1). Vậy \(n(B) = \;11.\)
Vậy xác suất của biến cố B là: \(P(B) = \;\frac{{n(B)}}{{n(\Omega )}} = \frac{{11}}{{36}}.\)
a: n(omega)=6*6=36
n(A)=6
=>P(A)=6/36=1/6
b: B={(1;5); (1;3); (1;1); (2;2); (2;4); (2;6);...;(6;2); (6;4); (6;6)}
=>n(B)=18
=>P(B)=18/36=1/2
c: C={(1;1); (1;2); (1;3); (1;4); (1;5); (1;6); (2;1); (2;2); (2;3); (2;4); (2;5); (2;6); (3;1); (3;2); (3;3); (3;4); (3;5); (3;6); (4;1); (4;2);...;(4;5); (5;1); (5;2); (5;3); (5;4); (6;1); (6;2); (6;3)}
=>n(C)=30
P(C)=30/36=5/6