K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2023

\(P\left(x\right)+Q\left(x\right)=\left(-2x^4-7x^2+3x\right)+\left(5x^3-3x^2+4x-6\right)\)

\(=-2x^4-7x^2+3x+5x^3-3x^2+4x-6\)

\(=-2x^4+5x^3+\left(-7x^2-3x^2\right)+\left(3x+4x\right)-6\)

\(=-2x^4+5x^3-10x^2+7x-6\)

\(P\left(x\right)-Q\left(x\right)=\left(-2x^4-7x^2+3x\right)-\left(5x^3-3x^2+4x-6\right)\)

\(=-2x^4-7x^2+3x-5x^3+3x^2-4x+6\)

\(=-2x^4-5x^3+\left(-7x^2+3x^2\right)+\left(3x-4x\right)+6\)

\(=-2x^4-5x^3-4x^2-x+6\)

31 tháng 10 2019

Thu gọn Q(x) = x4 + 7x2 + 1

Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A

10 tháng 4 2020

dsssws

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

`#3107.101107`

`A(x) = 3x - 9x^2 + 4x + 5x^3 + 7x^2 + 1`

`= (3x + 4x) - (9x^2 - 7x^2) + 5x^3 + 1`

`= 7x - 2x^2 + 5x^3 + 1`

`B(x) = 5x^3 - 3x^2 + 7x + 10`

`A(x) - B(x) = 7x - 2x^2 + 5x^3 + 1 - (5x^3 - 3x^2 + 7x + 10)`

`= 7x - 2x^2 + 5x^3 + 1 - 5x^3 + 3x^2 - 7x - 10`

`= (7x - 7x) + (3x^2 - 2x^2) + (5x^3 - 5x^3) - (10 - 1)`

`= x^2 - 9`

`=> C(x) = x^2 - 9`

`C(x) = 0`

`=> x^2 - 9 = 0`

`=> x^2 = 9 => x^2 = (+-3)^2 => x = +-3`

Vậy, nghiệm của đa thức `C(x)` là `x \in {3; -3}.`

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

 

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

3 tháng 5 2023

\(a,P\left(x\right)=2x^2+4x+5x^3-6\\ =5x^3+2x^2+4x-6\\ Q\left(x\right)=3x+x-5x^2-1\\ =-5x^2+\left(3x+1\right)-1\\ =-5x^2+4x-1\)

\(b,P\left(x\right)+Q\left(x\right)=5x^3+2x^2+4x-6-5x^2+4x-1\\ =5x^3+\left(2x^2-5x^2\right)+\left(4x+4x\right)+\left(-6-1\right)\\ =5x^3-3x^2+8x-7\)

Vậy \(P\left(x\right)+Q\left(x\right)=5x^3-3x^2+8x-7\)

\(P\left(x\right)-Q\left(x\right)=5x^3+2x^2+4x-6-\left(-5x^3+4x-1\right)\\ =5x^3+2x^2+4x-6+5x^3-4x+1\\ =\left(5x^3+5x^3\right)+2x^2+\left(4x-4x\right)+\left(-6+1\right)\\ =10x^3+2x^2+0-5\\ =10x^3+2x^2-5\)

Vậy \(P\left(x\right)-Q\left(x\right)=10x^3+2x^2-5\)

31 tháng 10 2017

Ta có: P(x) - Q(x) + R(x)

=(-5x3 + 7x2 - x + 8) - (4x3 - 7x + 3) - (6x3 + 4x)

=-5x3 + 7x2 - x + 8 - 4x3 + 7x - 3 + 6x3 + 4x

= -3x3 + 7x2 + 10x + 5. Chọn D

1 tháng 8 2021

a) P (x) =11+5x3+3x2-9x6-(6x2+5-9x6-4x4)

             =11+5x3+3x2-9x6-6x2-5+9x6+4x4

             =4x4+5x3-3x2+6                           

Q(x)=(3x4-5x2)-4x2+x4-4x-1

       =3x4-5x2-4x2+x4-4x-1

       =4x4-9x2-4x-1

b) M(x) = 4x4+5x3-3x2+6 + 4x4-9x2-4x-1

            = 8x4+5x3-12x2-4x+5

N(x)= 4x4+5x3-3x2+6 - 4x4+9x2+4x+1

       = 5x3+6x2+4x+7