K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

Đây

Ta có: \(3^{2n}+3^n+1\)

Vì n không chia hết cho 3 nên: n có dạng là \(3k+1\)

Thế vào: Ta có: \(3^{6k+2}+3^{3k+1}+1\)

\(=729^k\cdot9+27^k\cdot3+1\)

Mặt khác: \(729\equiv27\equiv1\)(mod 13)

Do đó: \(729^k\cdot9+27^k\cdot3+1\equiv1\cdot9+1\cdot3+1=13\)(mod 13)

Vậy .............

P/s: Xét luôn trường hợp \(n=3k+2\)với cách làm tương tự trên

16 tháng 7 2016

không trả lời

16 tháng 7 2016

không trả lời

5 tháng 11 2016

sao ko ai trả lời