\(\frac{12}{x}=\frac{12}{x+2}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)
\(\Leftrightarrow\frac{2}{x+\frac{12}{x}-3}+\frac{6}{x+\frac{12}{x}+2}=1\)
Đặt \(x+\frac{12}{x}-3=t\)
\(\Rightarrow\frac{2}{t}+\frac{6}{t+5}=1\Leftrightarrow2\left(t+5\right)+6t=t\left(t+5\right)\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{12}{x}-3=-2\\x+\frac{12}{x}-3=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+12=0\\x^2-8x+12=0\end{matrix}\right.\) (casio)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
Nên x + 1 = 0 => x = -1
b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)
Nên x +15 = 0 => x = -15
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1
\(pt\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)
\(\Leftrightarrow\frac{2}{x-3+\frac{12}{x}}+\frac{6}{x+2+\frac{12}{x}}=1\)
Đặt \(x+\frac{12}{x}=t\)
Khi đó:
\(pt\Leftrightarrow\frac{2}{t-3}+\frac{6}{t+2}=1\Leftrightarrow2t+4+6t-18=t^2-t-6\)
\(\Leftrightarrow t^2-t-6=8t-14\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left(t-8\right)\left(t-1\right)=0\)
\(\Leftrightarrow x+\frac{12}{x}=8;x+\frac{12}{x}=1\)
Thôi,bí rồi
<=> \(\frac{12\left(x+2\right)}{x\left(x+2\right)}\)= \(\frac{12x}{\left(x+2\right)x}\)+ \(\frac{\left(x+2\right)x}{\left(x+2\right)x}\)
<=> 12x + 24 = 12x + x2 + 2x
<=> 12x - 12x -x2 + 2x + 24 = 0
<=> - x2 + 2x + 24 = 0
<=> - x2 - 4x + 6x + 24 = 0
<=> - x(x - 4) + 6(x + 4) = 0
<=> (x + 4)(- x + 6) = 0
<=> x + 4 = 0 hoặc - x + 6 = 0
<=> x = -4 hoặc x = - 6
Cho tam giác ABC trên cạnh AB lấy điểm D sao cho AD gấp đôi DB trên AC lấy điểm E sao cho AE gấp đôi EC , BE cắt CD tại G .So sánh diện tích GDB với điện tích GEC