K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2023

Các bạn giúp mình ý 2 với ạ

12 tháng 4 2023

GỢI Ý

Bạn tự vẽ hình.

1) Gọi độ dài cạnh của hình vuông ABCD là a (\(AB=BC=CD=DA=a\))

△DCF∼△BEC (g-g) \(\Rightarrow\dfrac{DF}{a}=\dfrac{a}{BE}\)

BE//CD \(\Rightarrow\dfrac{a}{BE}=\dfrac{CH}{BH}\)

DF//BC \(\Rightarrow\dfrac{DF}{a}=\dfrac{DG}{CG}\)

\(\Rightarrow\dfrac{DG}{CG}=\dfrac{CH}{BH}\Rightarrow\dfrac{DG}{CH}=\dfrac{CG}{BH}=\dfrac{DG+CG}{CH+BH}=\dfrac{DC}{BC}=1\)

\(\Rightarrow DG=CH;CG=BH\)

△ADE∼△CHD \(\Rightarrow\dfrac{a}{AE}=\dfrac{CH}{a}\left(1\right)\)

△BCG∼△FAB \(\Rightarrow\dfrac{a}{AF}=\dfrac{CG}{a}\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow a\left(\dfrac{1}{AE}+\dfrac{1}{AF}\right)=\dfrac{CH+CG}{a}=\dfrac{CH+BH}{a}=1\)

\(\Rightarrow\dfrac{AC}{AE}+\dfrac{AC}{AF}=\sqrt{2}\)

b) BỔ ĐỀ HÌNH THANG: Trong hình thang, đường thẳng tạo bởi giao điểm của hai đường chéo và giao điểm của hai cạnh bên thì đi qua 2 trung điểm của hai đáy.

Quay lại bài toán:

Qua O kẻ đường thẳng // với AF cắt AB, CF tại X,Y.

*Chứng minh OX=OY (dùng định lí Thales giới hạn trong các tam giác trong hình thang ABCF).

*Chứng minh K là trung điểm AF (dùng định lí Thales trong các tam giác AKE, FKE).

23 tháng 4 2018

b) Xét Δ BCD có: O là trung điểm của BD

F là trung điểm của BC

⇒ OF là đường trung bình của ΔBDC ⇒ OF // DC mà DC // AB nên OF // AE

⇒ FH // BE

Mà O là trung điểm của AC nên H là trung điểm của EC hay AH là trung tuyến của ΔAEC. Mà AH cắt EO tại G nên G là trong tâm của ΔAEC ⇒ A, G, H thẳng hàng.

18 tháng 3 2022

help me 

NV
20 tháng 4 2023

Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)

Xét 2 tam giác vuông AED và MAB có:

\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)

\(\Rightarrow BM.ED=BO.BD\)

Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))

\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)

Xét hai tam giác BOM và BFD có:

\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)

NV
20 tháng 4 2023

loading...