K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2023

n(Ω)=6!

A:" Xếp thành 1 dãy hàng ngang sao cho 2 bạn học sinh nam đứng cạnh nhau"⇒ \(\overline{A}\):" 2 bạn học sinh nam ko đứng cạnh nhau".

Ghép 2 bạn học sinh nam thành 1 nhóm⇒ coi còn 5 người⇒ n(A)=2*5!( do hoán vị 2 bạn nam, và xếp 5 người)⇒ n(\(\overline{A}\))=6!-2*5!=4*5!

NV
2 tháng 2

Xếp 4 bạn nữ: có \(4!\) cách

4 bạn nữ tạo ra 5 khe trống, xếp 2 bạn nam vào 5 khe trống đó: \(A_5^2\) cách

Vậy tổng cộng có \(4!.A_5^2\) cách xếp thỏa mãn

NV
2 tháng 2

1. Đã giải

2.

Xếp 10 cái bánh thành hàng ngang, 10 cái bánh tạo ra 9 khe trống (mà khe trống này nằm giữa 2 cái bánh)

Đặt 2 vách ngăn vào 9 vị trí nói trên, 2 vách ngăn sẽ chia 10 cái bánh làm 3 phần sao cho mỗi phần có ít nhất 1 cái bánh. Vậy có \(C_9^2\) cách đặt 2 vách ngăn hay có \(C_9^2\) cách chia 10 cái bánh cho 3 người sao cho mỗi người có ít nhất 1 cái bánh.

10 tháng 2 2023

Để 2 học sinh nam ko ngồi đối diện và ngồi cạnh nhau nên ta có 2 lựa chọn
     Lựa chọn 1 : 7 bạn nam ngồi lần lượt vào các vị trí ghế 1,3,5,7,9 vá các bạn nữ ngồi 2,4,6,8,10,12,14
 Khi đó: ghế số 1 có 7 lựa chon
              ghế số 2 có 6 lựa chọn
              ghế số 3 có 5 lựa chon
               ghế số 4 có 4 lựa chon
               ghế số 5 có 3  lựa chon
                ghế số 6 có 2 lựa chon
               ghế số 7 có 1 lựa chon
 => có 7x6x5x4x3x2x1 = 5040 cách xếp các bạn nam 
   Tương tự cũng sẽ có   5040 cách xếp các bạn nữ

   Lựa chọn 2: Các bạn nam ngồi vào các ghế số 2,4,6,8,10,12,14
  =>  Tương tự ta cũng có 5040 cách xếp các bạn nam
      và 5040 cách xếp các bạn nữ 
 
 Vậy qua 2 lựa chọn ta có 5040x4= 20160 cách xếp 

NV
22 tháng 11 2021

TH1: 5 học sinh lớp C đứng cách nhau đúng 1 vị trí 

- Chọn vị trí cho nhóm 5 học sinh lớp C: 2 cách (đứng đầu hàng hoặc ko đứng đầu hàng)

- Hoán vị 5 học sinh lớp C: 5! cách

- Hoán vị 5 học sinh lớp A và B: 5! cách

\(\Rightarrow2.5!.5!\) cách cho TH1

TH2: 5 học sinh lớp C trong đó có 2 bạn đứng cách nhau 2 vị trí

Chọn vị trí cho 2 người kề nhau: 4 cách

Hoán vị 5 học sinh lớp C: 5! cách

Chọn 1 học sinh lớp A, 1 học sinh lớp B xếp vào 2 vị trí liền kề nói trên: \(C_2^1.C_3^1.2!\) cách

Xếp vị trí cho 3 người còn lại: 3! cách

\(\Rightarrow4.5!.C_2^1.C_3^1.2!.3!\) cách cho TH2

Tổng cộng: \(TH1+TH2=...\)

24 tháng 12 2019

Chọn D

Số phần tử của không gian mẫu: 

Gọi A là biến cố: “cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau”.

Ta tính n() như sau:

Đánh số các ghế ngồi của 8 học sinh như hình vẽ sau:

- Để xếp cho cặp sinh đôi ngồi cạnh nhau có 6 cách.

- Mỗi cách như vậy có  cách đổi chỗ.

 

- Với mỗi cách xếp cặp sinh đôi, ví dụ: Cặp sinh đôi ở vị trí 1 và 2.

Do nam nữ không ngồi đối diện nên:

+ Vị trí 5 và 6 đều có 3 cách.

+ Vị trí 3 có 4 cách, vị trí 7 có 1 cách.

+ Vị trí 4 có 2 cách, vị trí 8 có 1 cách.

 

Suy ra n(A) = 6.2.3.3.4.1.2.1 = 864

NV
22 tháng 12 2022

Xếp Phúc Đức cạnh nhau có \(2!\) cách

Xếp 4 học sinh nữ có \(4!\) cách

4 học sinh nữ tạo ra 5 khe trống, xếp cặp Phúc-Đức và 3 học sinh nam còn lại vào 5 khe trống này có: \(A_5^4\) cách

\(\Rightarrow2!.4!.A_5^4\) cách xếp thỏa mãn

14 tháng 4 2018

Chọn B.

Phương pháp: Sử dụng hoán vị và quy tắc nhân.

Cách giải: Xếp 12 học sinh vào 12 ghế có 12! cách xếp.

Đánh số ghế  như sau:

1

2

3

4

5

6

7

8

9

10

11

12

Chọn giới tính nam hoặc nữ có 2 cách.

Xếp nam hoặc nữ ngồi vào các ghế 1, 3, 5, 8, 10,12 có 6!= 720 cách.

Xếp các bạn giới tính còn lại vào 6 ghế còn lại có 6!= 720cách.