K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

10 tháng 7 2021

bạn có thể làm giúp mình câu c,d đc ko?

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

9 tháng 7 2021

vậy còn câu c và d.

a) Xét tứ giác BCEF có 

\(\widehat{BEC}=\widehat{CFB}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{CFB}\) là hai góc cùng nhìn cạnh BC

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Câu 8:

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

Nhờ các bạn giúp giải tiếp câu b và c. Thanks

 

13 tháng 5 2015

c) xét tam giác CFA và tam giác CEH có

C chung

F=E=90 độ

vậy tam giác CFA~CEH(g.g)

\(\Rightarrow\frac{CF}{CE}=\frac{CA}{CH}\Rightarrow\frac{CF}{CA}=\frac{CE}{CH}\).

xét tam giác CFE và CAH có

   C chung

\(\frac{CF}{CA}=\frac{CE}{CH}\left(cmt\right)\)

vậy chúng đồng dạng với nhau. 

suy ra góc CFE=CAH(góc tương ứng)

     mà       DFH=CAH( do tam giác FHD~AHC)

từ hai điều đó suy ra CFE=DFH

hay CFE=CFD

vậy FC là tia phân giác góc DFE( điều phải chứng minh)

xog rồi bạn

14 tháng 5 2015

Cám ơn nhiều ạ Tuân Huỳnh Ngọc MInh ^_^

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)