a, A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< 1\)
b, B=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}< 2\)
c, C=\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}< 6\)
d, D=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}< \frac{1}{100}\)
2A=1+1/2+1/2^2+1/2^3+...+1/2^99
-A= 1/2+1/2^2+1/2^3+...+1/2^99+1/2^100
-------------------------------------------------------------------
A=1-1/2^100
A=2^100-1/2^100<1(dpcm)
B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =
=1-1/2-1/2-1/3+.........+1/99-1/100
=1-1/100
=99/100
vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2