Một xe du lịch và một xe khách cùng khởi hành từ địa điểm A đến địa điểm B . Vận tốc cóa xe du lịch là 60km/h ,vận tốc của xe khách là 50km/h .Khi xe khách đến B thì xe du lịch đã đến B trước 48 phút .Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi $50$ phút thành $\frac{5}{6}$ (h)
Gọi vận tốc xe khách là $a$ km/h thì vận tốc xe du lịch là $a+20$ km/h
Nếu như coi quãng đường 2 xe đi là $AB$ thì:
Thời gian xe khách đi: $\frac{AB}{a}$ (h)
Thời gian xe du lịch đi $\frac{AB}{a+20}$ (h)
Theo bài ra: $\frac{AB}{a}-\frac{AB}{a+20}=\frac{5}{6}$
Nếu đề bài yêu cầu tính vận tốc xe, thì đến đây bạn thay giá trị $AB$ vào để tính ra $a$.
Gọi quảng đường AB là x ( x dương ,x>0)
Vận tốc của xe du lịch là 60km/h
=> thời gian của xe du lịch đi là \(\dfrac{x}{60}\)
Vận tốc của xe khách là 50km/h
=> thời gian của xe khách là \(\dfrac{x}{50}\)
Đổi 48 phút = \(\dfrac{4}{5}\left(h\right)\)
Ta có pt: \(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{4}{5}\)
Giải ra ta được x= 240
vậy quảng đường AB dài 240 km
bạn giải rõ hơn dc k
tai s \(\dfrac{x}{50}\)-\(\dfrac{x}{60}\)=\(\dfrac{4}{5}\) giai ra dc x=240
Gọi \(x,y\) là vận tốc của xe khách và xe du lịch \(\left(x,y>0\right)\left(km/h\right)\)
\(36p=0,6h\)
Theo đề bài, ta có hệ pt :
\(\left\{{}\begin{matrix}x+13=y\\\dfrac{156}{x}-\dfrac{156}{y}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-13\\-156x+156y=0,6\end{matrix}\right.\)
\(\)Bai có đúng số không ấy, chứ mình ra vô nghiệm \(;-;\)
Gọi x ( km/h) là vận tốc xe du lịch (x>0)
=> x-20 (km/h) là vận tốc xe khách.
Thời gian xe du lịch đi hết quãng đường AB là: \(\frac{100}{x}\) (giờ).
Thời gian xe khách đi hết quãng đường AB là: \(\frac{100}{x-20}\)(giờ).
Theo đề bài, ta có phương trình:
\(\frac{100}{x-20}-\frac{100}{x}=\frac{5}{6}\)
<=> \(x=60\) (nhận)
Trả lời: Vận tốc xe du lịch là 60 (km/h).
Vận tốc xe khách là 40 (km/h).