Cho biểu thức P = ((2sqrt(x))/(sqrt(x) + 3) + (sqrt(x))/(sqrt(x) - 3) - (3x + 3)/(x - 9)) / ((2sqrt(x) - 2)/(sqrt(x) - 3) - 1) Tổng các giá trị nguyên của x để P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Khi x=36 thì \(A=\dfrac{6}{2\cdot6-4}=\dfrac{6}{12-4}=\dfrac{6}{8}=\dfrac{3}{4}\)
2:
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >4\end{matrix}\right.\)
\(C=B:A\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{3\sqrt{x}-x}{x-4}\right):\dfrac{\sqrt{x}}{2\sqrt{x}-4}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+3\sqrt{x}-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+3\sqrt{x}-x}{\sqrt{x}+2}\cdot\dfrac{2}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+2}\)
3: \(C\cdot\sqrt{x}< \dfrac{4}{3}\)
=>\(\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{3}< 0\)
=>\(\dfrac{2\sqrt{x}\cdot3-4\left(\sqrt{x}+2\right)}{3\left(\sqrt{x}+2\right)}< 0\)
=>\(6\sqrt{x}-4\sqrt{x}-8< 0\)
=>\(2\sqrt{x}-8< 0\)
=>\(\sqrt{x}< 4\)
=>\(0< =x< 16\)
Kết hợp ĐKXĐ của C, ta được: \(\left\{{}\begin{matrix}0< x< 16\\x< >4\end{matrix}\right.\)
a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\dfrac{2}{\sqrt{x}+1}\)
c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)
d: |B|=A
=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)
=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)
=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)
=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)
a: Khi x=4 thì \(B=\dfrac{2}{2-5}=\dfrac{2}{-3}=\dfrac{-2}{3}\)
b: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\)
\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right)\cdot\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-3+2\sqrt{x}}{x-9}\cdot\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\cdot\dfrac{2}{\sqrt{x}-3}=\dfrac{6}{\sqrt{x}-3}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-9-3x-9}{2\left(x-9\right)}=\dfrac{-2x-18}{2\left(x-9\right)}=\dfrac{-x-9}{x-9}\)
a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: P=A:B
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)
=>P>1
1: =>x^2-x=3-x
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
2: =>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
3: =>2|x-1|=6
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
4: =>|2x-3|=|x-2|
=>2x-3=x-2 hoặc 2x-3=-x+2
=>x=1 hoặc x=5/3
5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
1: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\cdot\left(\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
2: Thay x=9 vào A, ta được:
\(A=\dfrac{3}{3+1}=\dfrac{3}{4}\)
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}}{x-9}+\dfrac{3x+3}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\dfrac{\left(3x-3\sqrt{x}\right)\left(\sqrt{x}+1\right)+\left(3x+3\right)\left(\sqrt{x}+3\right)}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x\sqrt{x}+3x-3x-3\sqrt{x}+3x\sqrt{x}+9x+3\sqrt{x}+9}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{6x\sqrt{x}+9x+9}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)