K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3 2023

\(2x^2+3x-\left(m-1\right)>0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2>0\\\Delta=9+8\left(m-1\right)< 0\end{matrix}\right.\)

\(\Rightarrow m< -\dfrac{1}{8}\)

2 tháng 11 2018

\(\Delta=\left(-2m+4\right)^2-4\cdot\left(-1\right)\left(m+3\right)\)

=4m^2-16m+16+4(m+3)

=4m^2-16m+16+4m+12

=4m^2-12m+28

Để f(x)<0 với mọi x thì 4m^2-12m+28<0 và -1<0

=>\(m\in\varnothing\)

21 tháng 3 2018

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

Sửa $f(x)=mx+m-2x=x(m-2)+m$

Với $m=2$ thì $f(x)=2>0$ với mọi $x$, tức là không có giá trị thực nào của $x$ để $f(x)$ âm (thỏa mãn)

Với $m\neq 2$ thì đồ thị $f(x)=x(m-2)+m$ là 1 đường thẳng tiếp tuyến, luôn tồn tại giá trị của $x$ để $f(x)$ âm.

Vậy $m=2$

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

$f(x)=mx+m=2x$? Bạn có ghi nhầm đề không nhỉ?

27 tháng 10 2018