tìm nghiệm của đa thức
m(x)=x2+7x-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
a. M(x) + N(x) = 6x3 – 2x2 + 3x +10 - 6x3 + x2 – 6x -10
= (6x3 - 6x3 ) + ( -2x2 + x2 ) + ( 3x - 6x ) + ( 10 - 10 )
= -x2 - 3x
M(x) - N(x) = 6x3 – 2x2 + 3x +10 - ( –6x3 + x2 – 6x -10)
= 6x3 – 2x2 + 3x +10 + 6x3 - x2 + 6x +10
= (6x3 + 6x3 ) + ( -2x2 - x2 ) + ( 3x + 6x) + ( 10 + 10)
= 12x3 - 3x2 + 9x + 20
b. Đặt -x2 - 3x = 0
=> -x2 + (-3)x = 0
=> -x2 + 3.-x = 0
=> -x(-x+ 3) = 0
=>\(\left[{}\begin{matrix}-x=0\\-x+3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\-x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy nghiệm của đa thức trên là 0 hoặc -3
a) M(X) + N(x)= (6x3 – 2x2 + 3x +10)
+ (–6x3 + x2 – 6x -10)
M(x) + N(x)= – x2 - 3x.
M(x) + N(x)= (6x3 – 2x2 + 3x +10)
- (–6x3 + x2 – 6x -10)
M(x) - N(x)= 12x3 - x2 + 9x + 20.
b) Nghiệm của M(x) + N(x)= x= 0, -3.
Đặt \(x^2-7x+8=0\)
\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)
Ta có \(x^2-7x+8=0\Leftrightarrow x^2-\dfrac{2.7}{2}x+8=0\)
\(\Leftrightarrow x^2-7x+\dfrac{49}{4}-\dfrac{49}{4}+8=0\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2-\dfrac{17}{4}=0\)
\(\left[{}\begin{matrix}x-\dfrac{7}{2}=\dfrac{\sqrt{17}}{2}\\x-\dfrac{7}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{17}+7}{2}\\x=\dfrac{-\sqrt{17}+7}{2}\end{matrix}\right.\)
Đặt \(x^2-7x+8=0\)
\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)
Bài 3:
a) Đặt f(x)=0
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Đặt f(x)=0
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 3:
c) Đặt f(x)=0
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
d) Đặt f(x)=0
\(\Leftrightarrow x^4+2=0\)
\(\Leftrightarrow x^4=-2\)(Vô lý)
\(f\left(x\right)=x2-7x+6\)
ta có f(x)=0
hay\(x2-7x+6=0\)
\(\Leftrightarrow x2-7x=-6\)
\(\Leftrightarrow x\left(-5\right)=-6\)
\(\Leftrightarrow x=\frac{6}{5}\)
vậy nghiệm của đa thức f(x) là 6/5
\(f\left(x\right)=x^2-7x+6\)
\(f\left(x\right)=0\Leftrightarrow x^2-7x+6=0\)
\(\Leftrightarrow x^2-x-6x+6=0\)
\(\Leftrightarrow x.\left(x-1\right)-6.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}z=1\\x=6\end{cases}}\)
Vậy phương trình có 2 nghiệm \(x=\left\{1,6\right\}\)
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
=> x2 - x + 8x - 8 = 0
=> x(x - 1) + 8(x - 1) = 0
=> (x - 1)(x+8) = 0
=> x - 1 = 0 hoặc x + 8 = 0
=> x = 1 hoặc x = -8
Vậy nghiệm của đa thức là x = 1 hoặc x = -8
- Ủng hộ -
~minhanh~
x2+7x-8=0
=>x2+x-8x-8 =0 (Bạn tách 7x ra thành x-8x)
=> x(x+1)-8(x+1)=0
=> (x-8)(x+1)=0
=> x-8=0 hoặc x+1=0
=> x=8 x=-1