Cho tam giác ABC vuông tại A, AB < AC. Lấy H \(\in\) AC, kẻ HE vuông góc với BC ( E\(\in\)BC.
a) Tam giác ABC đồng dạng với tam giác EHC
b) góc HBC = góc EAC
c) AB.HI=AI.HE
d) H ở đâu trên AC thì \(S_{_{ }MACB}=4S_{IHCE}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔEHC
2: Xét tứ giác AHEB có \(\widehat{HAB}+\widehat{HEB}=180^0\)
nên AHEB là tứ giác nội tiếp
hay \(\widehat{HBC}=\widehat{EAC}\)
2: Xét tứ giác AHEB có
\(\widehat{HAB}\) và \(\widehat{HEB}\) là hai góc đối
\(\widehat{HAB}+\widehat{HEB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AHEB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{HAE}=\widehat{HBE}\)(hai góc cùng nhìn cạnh HE)
hay \(\widehat{HBC}=\widehat{EAC}\)(đpcm)
1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có
\(\widehat{HCE}\) chung
Do đó: ΔABC\(\sim\)ΔEHC(g-g)
a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có
AH chung
HB=HK
Do đó: ΔAHB=ΔAHK
b: Ta có; ΔAHB=ΔAHK
nên \(\widehat{HAK}=\widehat{BAH}\)
mà \(\widehat{BAH}=\widehat{EHA}\)
nên \(\widehat{EHA}=\widehat{HAK}\)
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
a: Xét ΔABC vuông tại A và ΔEHC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEHC
b: góc HEB+góc HAB=180 độ
=>AHEB nôi tiếp
=>góc HBC=góc EAC