K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2023

\(d\left(M;3y+7\right)=\dfrac{\left|0.2+3.5+7\right|}{\sqrt{9}}=\dfrac{22}{3}\)

8 tháng 10 2019

Đáp án D

2 tháng 5 2017

Sử dụng công thức khoảng cách ta có

3. − 2 − 4.1 + 2 3 2 + − 4 2 = m − 2 + 3.1 − 3 m 2 + 3 2

⇔ 8 5 =    − 2 m m 2 + 9 ⇔ 8 m 2 + 9 = 10 m ⇔ 64 ( m 2 + 9 ) = 100 m 2 ⇔     64 m 2 + ​​​   576     = 100 m 2 ⇔ 36 m 2 =    576 ⇔ m 2 = 16 ⇔ m = ± 4

Đáp án là phương án C.

Chú ý. Học sinh có thể thử lại các phương án được đưa ra để chọn đáp án đúng, tuy nhiên sẽ tốn nhiều thời gian hơn là làm bài toán trực tiếp.

13 tháng 8 2018

b) Xét tam giác OMB vuông tại O có:

BM2 = OM2 + OB2 = 1 + 1 = 2 ⇒ BM = √2

Tương tự tam giác OAB vuông tại O có:

B A 2  = O A 2 + O B 2  = 1 + 1 = 2 ⇒ BA = 2

Xét tam giác MAB có:

B M 2 + B A 2  = 2 + 2 = 4 = A M 2

⇒ ΔMAB vuông tại B

Do đó, khoảng cách từ M đến đường thẳng (d) là độ dài đoạn BM = 2

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

8 tháng 12 2019

Khoảng cách từ điểm M (-2; 1) đến đường thẳng Δ là:

Giải bài tập Toán 10 | Giải Toán lớp 10

Khoảng cách từ điểm O (0; 0) đến đường thẳng Δ là:

Giải bài tập Toán 10 | Giải Toán lớp 10

NV
29 tháng 3 2022

A là giao điểm AB và AC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x+y-5=0\\x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

\(d\left(A;...\right)=\dfrac{\left|7.2-8.1+26\right|}{\sqrt{7^2+\left(-8\right)^2}}=\dfrac{32}{\sqrt{113}}\)

2 tháng 12 2018

ĐÁP ÁN C

d ( A ; ​​​   Δ ) =    a . x 0 + ​ b y 0 + ​ c a 2 + ​ b 2 = 3.7 − 4.4 + 8 3 2 + ( − 4 ) 2 = 13 5

16 tháng 7 2018

Giải bài 8 trang 81 SGK hình học 10 | Giải toán lớp 10