K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Gọi M là trung điểm cạnh AB

Dựa vào tính chất hai mặt phẳng vuông góc với nhau suy ra SM⊥(ABC)

⇒ V S.ABC = 1/3.SΔABC.SM = 1/3.1/2.AC.BC.SM

Gọi N là trung điểm của đoạn AC

MN là đường trung bình của tam giác ABC
⇒ MN ⊥ AC; MN = 1/2.BC = a

Chỉ ra góc giữa mặt phẳng (ABC) và mặt phẳng (SAC) là SMN=60 độ

Tính thể tích hình chóp S.ABC

SM = MN.tanSNM = a.tan60 = a√3.

SN = MN/cosSNM = a/cos60 = 2a.

AB = 2SM = 2a√3.

AC = √(AB^2 − BC^2) = √[(2a√3)^2−(2a)^2]=2a√2

Vậy V S.ABC = 1/3.SΔABC.SM = 1/3.1/2.AC.BC.SM = (2a^3√6)/3 (đvtt)

25 tháng 5 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Gọi (α) là mặt phẳng qua SM và song song với AB.

Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.

Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.

+ Xác định khoảng cách.

Qua N kẻ đường thẳng d’ song song với AB.

Gọi (P) là mặt phẳng đi qua SN và d’.

Ta có: AB // (P).

Khi đó: d(AB, SN) = d(A, (P)).

Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:

d(AB, SN) = d(A, (SND)) = AH.

Trong tam giác SAD, ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác SAB, ta có S A   =   A B . tan 60 o   =   2 a 3 và AD = MN = BC/2 = a.

Thế vào (1), ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a: BC vuông góc AM

BC vuông góc SA

=>BC vuông góc (SAM)

b: BC vuông góc (SAM)

=>BC vuông góc SM

=>(SM;(ABC))=90 độ

 

26 tháng 2 2018

Đáp án D