Cho tam giác ABC vuông tại A, có B=60° . Tia phân giác của B cắt AC tại D. Kẻ DE vuông góc với BC tại E a/ chứng minh:∆ABD=∆EBD b/ Chứng minh: ∆ABE là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
-Tham khảo-
a, Xét tam giác ABD và tam giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD là phân giác của ABC)
=> tam giác ABD=tam giác EBD ( cạnh huyền-góc nhọn)
b, Vì tam giác ABD= tam giác EBD ( câu a)
=> AB=EB
Xét tam giác ABE có :
AB=EB
=> Tam giác ABE cân tại B
Xét tam giác ABE cân tại B có :
ABE =60 độ( vì góc ABC=60 độ)
=> Tan giác ABE đều
c, Xét tam giác ABC vuông tai jS có :
góc ABC =60 độ ( giả thiết), góc BAC= 90 độ( Vì tam giác ABC vuông tại A)
=> góc C = 30 độ
Mà trong tam giác vuông , cạnh đối diện với góc 30 độ bằng nửa cạnh huền
=> 2AB = BC . Mà AB = 5 ( giả thiết)
=> BC =10
Áp dụng định lý PYTAGO vào tam giác ABC vuông tại A có :
BC^2 = AB^2 + AC^2 . Mà AB = 5 , BC =10
=> 10^2 = 5^2 + AC^2
=> 100=25 + AC^2
=> AC^2 = 75
=> AC = căn bậc 2 của 75 ( Vì mình ko đánh dấu căn bậc 2 được nên đành phải viết)
hình tự kẻ nghen:333
a) Xét tam giác ABD và tam giác EBD có
B1=B2( gt)
BD chung
BAD=BED(=90 độ)
=> tam giác ABD= tam giác EBD( ch-gnh)
b) từ tam giác ABD= tam giác EBD=> AB=EB( hai cạnh tương ứng)
=> tam giác ABE cân B mà ABC= 60 độ=> ABE đều
c) vì ABE đều=> BAE= 60 độ, AB=EB=AE
ta có BAC= BAE+EAC=90 độ
=> EAC=90-60=30 độ
vì tam giác ABC vuông tại A và có ABC=60 độ
=> ACB= 30 độ
=> ACB=EAC=> tam giác EAC cân E=> AE=EC=> AE=EC=EB=AB
ta có BC= BE+EC=> BC= 5cm+5cm=10cm
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
Xét ΔBAE có BA=BE và góc ABE=60 độ
nên ΔBAE đều
c; Xét ΔABC vuông tại A có cos B=AB/BC
=>5/BC=1/2
=>BC=10cm
Để mình làm cho
xét tam giác ABD và tam giác EBD có
BD chung
ABD=EBD( vì BD là phân giác )
BAD=BED=90 độ
suy ra tam giác ABD=tam giác EBD ( cạnh huyền - góc nhọn)
vậy tam giác ABD = tam giác EBD
b vì tam giác ABD =tam giác EBD ( cm câu a)
suy ra AB = EB ( 2 cạnh tương ứng)
suy ra tam giác ABE cân tại b
mà góc B = 60 độ
suy ra tam giác ABE đều
Vậy tam giác ABE đều
c từ từ mình đang nghĩ
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
mà góc ABE=60 độ
nên ΔBAE đều