K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2023

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\left(n+3\right)\)

\(\Rightarrow A\) là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

15 tháng 10 2018

Ta có

A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]

= n(n3 -7n2 -6)( n3 -7n2 +6)

Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)

n3 -7n2 +6 = (n-1)(n-2)(n+3)

Do đó:

A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)

Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp

+Tồn tại một  bội của 5 ⇒ A chia hết cho 5

+Tồn tại một bội của 7 ⇒ A chia hết cho 7

+Tồn tại hai bội của 3 ⇒ A chia hết cho 9

+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho

5.7.9.16 =5040.

+ Qua ví dụ 1 rút ra cách làm như sau:

Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).

1 tháng 6 2021

n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho   4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả

26 tháng 2 2023

mình cần giúp gấp

26 tháng 10 2022

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

17 tháng 11 2017

Có 5040=16.9.5.7

A= n3(n2-7)2-36n

= n.[ n2(n2-7)2-36]

= n.[(n3-7n)2-36]

= n.(n3-7n-6)(n3-7n+6)

Có :

\(\cdot\) n3-7n-6

= n3-9n+2n-6

= n(n2-9)+2(n-3)

= n(n+3)(n-3)+2(n-3)

= (n-3)(n+1)(n+2)

\(\cdot\) n3-7n+6

= n3-9n+2n+6

= n(n-3)(n+3)+2(n+3)

= (n+3)(n-1)(n-2)

\(\Rightarrow A=\left(n-3\right)\left(n-1\right)\left(n-2\right)n\left(n+1\right)\left(n+3\right)\left(n+2\right)\)

Đây là tích 7 số nguyên liên tiếp , trong 7 số nguyên liên tiếp đó có

\(-\) Tồn tại 1 bội số của 5 \(\Rightarrow A⋮5\)

\(-\) Tồn tại 1 bội số của 7 \(\Rightarrow A⋮7\)

\(-\) Tồn tại 2 bội số của 3 \(\Rightarrow A⋮9\)

\(-\) Tồn tại 3 bội số của 2 , trong đó có 1 bội số của 4 \(\Rightarrow A⋮16\)

\(\Rightarrow A⋮9.16.5.7\)

\(\Rightarrow A⋮5040\left(đpcm\right)\)

17 tháng 11 2017

với mọi n thuộc N

7 tháng 11 2021

giúp mình với bucminh

 

 

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

hay \(n\in\left\{0;8;-8\right\}\)

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+6 chia hết cho n^2+1

=>n+6 chia hết cho n^2+1

=>n^2-36 chia hết cho n^2+1

=>n^2+1-37 chia hết cho n^2+1

=>n^2+1 thuộc {1;37}

=>\(n^2\in\left\{0;36\right\}\)

=>n thuộc {0;6;-6}

Ta thử lại, ta thấy n=-6 và n=6 không thỏa mãn 

=>n=0

4 tháng 11 2017

đặt A=\(n^3\)(n^2-7)^2-36n=n(n^2(n^2-7)^2-6^2)

=n((n^3-7n)-6^2)

=n(n^3-7n-6)(n^3-7n+6)

=n(n+1)(n+2)(n-3)(n+3)(n-2)(n-1)

do A là tích của 7 số tự nhiên liên tiếp =>tồn tại ít nhất 1 số chia hết cho 7

=> A chia hết cho 7 (ĐPCM)

10 tháng 12 2016

Ta có: \(5040=16.9.5.7\)

\(A=\text{ }n^3\left(n^2-7\right)^2-36n=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

Chứng minh chia hết cho 24

Đây là 7 số nguyên liên tiếp nên sẽ có ít nhất 3 số chẵn liên tiếp mà trong 3 số chẵn liên tiếp sẽ có 2 số chia hết cho 2 và 1 số chia hết cho 4 nên A chia hết cho 16

Chứng minh chia hết cho 9

Cứ 3 số liên tiếp thì chia hết cho 3 mà trong này ta có 2 bộ số như vậy nên chia hết cho 9

Chứng minh chia hết cho 5

Trong 5 số liên tiếp có ít nhất 1 số chia hết cho 5 nên A chia hết cho 5

Chứng minh chia hết cho 7

Trong 7 số liên tiếp có ít nhất 1 số chia hết cho 7 nên A chia hết cho 7

Vì 16,9,5,7 là các số nguyên tố cũng nhau từng đôi 1 nên A chia hết cho 5040

7 tháng 8 2021

A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một  bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)

30 tháng 7 2016

Ta có 5040 = 24. 32.5.7

A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 – 36 ] = n. [n.(n2-7 ) -6].[n.(n2-7 ) +6]

 = n.(n3-7n – 6).(n3-7n +6)

Ta lại có n3-7n – 6 = n3 + n2 –n2 –n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1)

=(n+1)(n2-n-6)= (n+1 )(n+2) (n-3)

Tương tự : n3-7n+6 = (n-1) (n-2)(n+3) 

Do đó A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3)

Ta thấy : A là tích của 7 số nguyên liên tiếp mà trong 7 số nguyên liên tiếp:

-         Tồn tại một bội số của 5 (nên A chia hết  5 )

-         Tồn tại một bội của 7 (nên A chai hết  7 )

-         Tồn tại hai bội của 3 (nên A chia hết  9 )

-         Tồn tại 3 bội của 2 trong đó có bội của 4 (nên A chia hết 16)

Vậy A chia hết cho 5, 7,9,16 đôi một nguyên tố cùng nhau  A 5.7.9.16= 5040