Xét các số thực a,b,c thay đổi thỏa mãn \(0\le a\le1\le b\le2\le c\) và \(a+b+c=5\) . Tìm giá trị lớn nhất của biểu thức \(A=a^2+b^2+c^2\) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x\le y\le z\le2\)
\(B=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}+3\) (1)
Do \(x\le y\le z\Rightarrow\left(z-y\right)\left(y-x\right)\ge0\)
\(\Leftrightarrow xy+yz\ge y^2+zx\)
\(\Leftrightarrow\dfrac{x}{z}+1\ge\dfrac{y}{z}+\dfrac{x}{y}\)
Tương tự: \(1+\dfrac{z}{x}\ge\dfrac{y}{x}+\dfrac{z}{y}\)
Cộng vế: \(2+\dfrac{x}{z}+\dfrac{z}{x}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{y}{x}\) (2)
Từ (1); (2) \(\Rightarrow B\le2\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+5\)
Đặt \(\dfrac{z}{x}=t\Rightarrow1\le t\le2\)
\(\Rightarrow B\le2\left(t+\dfrac{1}{t}\right)+5=\dfrac{2t^2+2}{t}+5=\dfrac{2t^2+2}{t}-5+10\)
\(\Rightarrow B\le\dfrac{2t^2-5t+2}{t}+10=\dfrac{\left(t-2\right)\left(2t-1\right)}{t}+10\le10\)
\(B_{max}=10\) khi \(t=2\) hay \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\)
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24
\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)
\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)
Đặt \(m+n=t\Rightarrow0\le t\le2\)
\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)
Thầy ơi sao bên này là (2-mn) qua bên kia lại là \(\left[8-\left(m+n\right)^2\right]\) , dưới mẫu là (m+1)(n+1) qua bên này là \(\text{(m+n+2)}^2\)
áp dụng bđt bunhia cốp xki ta có cặp số \(\left(a,2b,c\right)\left(1,\sqrt{2},1\right)\)
\(\left(a^2+2b^2+c^2\right)\left(1+\sqrt{2}+1\right)>=\left(a+b+c\right)^2\)
\(a^2+2b^2+c^2>=\frac{0^2}{2+\sqrt{2}}=0\)
dấu "=" xảy ra khi và chỉ khi \(\frac{a^2}{1}=\frac{b^2}{\sqrt{2}}=\frac{c}{1}\)
vậy min P =0
sorry bạn mình ko tìm đc giá trị lớn nhất mà chỉ tìm đc giá trị nhỏ nhất thôi
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)
\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)
\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)
\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)
Cộng vế:
\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)
\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)