K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Xét tam giác AEC= tam giác ADB(g-c-g)

suy ra AE=AD từ đó BE=DC

13 tháng 2 2018

có CE Cắt BD tại I suy ra AI là p/g suy ra AM vuông góc

1 tháng 2 2018

A A C C B B E E D D I I M M G G J J H H K K

a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Xét tam giác vuông ABE và tam giác vuông ACD có:

AB = AC (gt)

\(\widehat{ABE}=\widehat{ACD}\)

\(\Rightarrow\Delta ABE=\Delta ACD\)  (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BE=CD;AE=AD\)

b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.

Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.

Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)

Từ đó suy ra tam giác AMC vuông cân tại M.

c) Gọi giao điểm của DH, AK với BE lần lượt là J và G. 

Do DH và AK cùng vuông góc với BE nên ta có 

\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)

\(\Rightarrow HK=AD\)

Mà AD = AE nên HK = AE.    (1)

Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)

\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)

Suy ra AG là phân giác góc IAE.

Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)

\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)    

Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE  (2)

Từ (1) và (2) suy ra HK = KC.

18 tháng 11 2017

16 tháng 7 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc ngoài tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.

25 tháng 4 2018
a)có ∆ABC cân tại A=> AB=AC(1) Mà D,E là trung điểm của AB, AC =>DA=DB, EA=EC(2).Từ (1)(2) => AD=AE. Xét ∆vuông AOD và ∆vuông AOE ta có: AO chung, AD=AE(cmt)=> ∆vuông AOD=∆vuông AOE (cạnh huyền- cạnh góc vuông) b) vì DA=DB, ID vuông góc với AB => ID là đường trung trực của AB=> IA=IB(Tính chất đường trung trực) c) Không rõ điểm K là điểm nào nên mình chịu

Giúp tớ với, tớ đang cần gấp

a)  tam giác AOE = AOD

31 tháng 1 2022

undefined

a) Xét   \(\Delta ABC\) có tia phân giác \(BAC,ACB\)  cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\)   (tính chất 3 đường phân giác của tam giác)

\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )

Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)

( tính chất của tia phân giác ) 

Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)

b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)

\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\)  ( dấu hiệu nhận biết tia phân  giác )

\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )

\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )

Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )

c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng 

 

 

 

31 tháng 1 2022

thật là ngược mộ nha

dù không biết đúng hay sai nhưng lâu lắm mới thấy người làm nguyên một bài toán hình thế này mà còn có hình nữayeu