cho tam giác ABC vuông tại A có AB=12cm,Ac=16cm kẻ đường cao AH(h thuộc BC) tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=20cm\)
Vì AD là pg
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AC}=\dfrac{20}{28}=\dfrac{5}{7}\Rightarrow CD=\dfrac{80}{7}cm;BD=\dfrac{60}{7}cm\)
Áp dụng định lí pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)
Ta có: AD là đường phân giác góc A nên:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{12}{16}=\dfrac{BD}{CD}\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{20}{7}\)
\(\Rightarrow CD=\dfrac{20}{7}.4=\dfrac{80}{7}\)
\(\Rightarrow BD=\dfrac{20}{7}.3=\dfrac{60}{7}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20(cm)
AH=12*16/20=9,6cm
HC=AC^2/BC=12,8cm
S AHC=1/2*9,6*12,8=61,44cm2
a: Sửa đề: HBA
Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vớiΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
đề có vấn đề đấy bạn, ABC cân A thì AB =AC =12 cm chứ sao AC =16cm đc nhỉ
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
DO đó: ΔHBA∼ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
1 diện tích tam giác là: (16x12):2= 96
2
2) Có ΔABC vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : SΔABC = SΔABH + SΔACH
=> BH.AH/2+HC.AH/2=SΔABC
=> BH^2.AH+HC^2.AH/2=SΔABC
=> AH.(BH^2+HC)2=SΔABC
=> AH.BC^2/2 = 96
=> AH = 96 . 2/BC = 96 . 2/20 = 9.6 (cm)
3) Có ΔABH vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
Do tam gaics ABC vuông tại A nên:
\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)