Cho tam giác ABC CÓ GÓC A = 90độ, BD là phân giác góc A kẻ dh vuông góc bc tại h
A. Cm Tam giac abc dong dang tam giac hdc
B. Cm CH . CB = CD . CA
Gấp 5 sao vote
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(hình tự vẽ vì dễ)
a, vì BD=CE mà 2 cạnh này đều phụ với BC nên BE=CD
xét t.giác ABE và t.giác ACD có:
AB=AC(gt)
\(\widehat{ABE}\)=\(\widehat{ACD}\)(vì \(\widehat{ABC}\)=\(\widehat{ACB}\))
BE=CD(cmt)
=> t.giác ABE=t.giác ACD(c.g.c)
=>AE=AD
=>t.giác DAE cân tại A
b, xét 2 t.giác vuông DHB và EKC có:
DB=EC(gt)
\(\widehat{ABD}\)=\(\widehat{ACE}\)(gt)
=>t.giác DHB=t.giác EKC(CH-GN)
=>DH=EK
a: Xét ΔCAB và ΔCED có
CA=CE
góc ACB=góc ECD
CB=CD
=>ΔCAB=ΔCED
b: Xét ΔABH vuông tại H và ΔEDK vuông tại K có
AB=ED
góc ABH=góc EDK
=>ΔABH=ΔEDK
Mình làm phần d) thôi nhé!
Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:
Tam giác ABI = Tam giác ACI)
mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)
=>\(\widehat{AIB}=\widehat{AIC}=90\)
Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:
\(AB^2=AI^2+BI^2\)(1)
Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:
\(AI^2=AD^2+DI^2\)(2)
Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:
\(BI^2=DI^2+BD^2\)(3)
Thay (2),(3) vào (1) ta có được:
\(AB^2=AD^2+DI^2+DI^2+BD^2\)
(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)
a)xét ΔABC và ΔHDC ta có
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{DHC}=90^o\)
=>ΔABC∼ΔHDC(g.g)
b)vì ΔABC∼ΔHDC
=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)
=>CH.CB=CD.CA