K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2023

19 tháng 3 2023

a)xét ΔABC và ΔHDC ta có

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{DHC}=90^o\)

=>ΔABC∼ΔHDC(g.g)

b)vì ΔABC∼ΔHDC

=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)

=>CH.CB=CD.CA

5 tháng 12 2023

cứu SOS

 

14 tháng 4 2019

(hình tự vẽ vì dễ)

a, vì BD=CE mà 2 cạnh này đều phụ với BC nên BE=CD

xét t.giác ABE và t.giác ACD có:

          AB=AC(gt)

         \(\widehat{ABE}\)=\(\widehat{ACD}\)(vì \(\widehat{ABC}\)=\(\widehat{ACB}\))

         BE=CD(cmt)

=> t.giác ABE=t.giác ACD(c.g.c)

=>AE=AD

=>t.giác DAE cân tại A

b, xét 2 t.giác vuông DHB và EKC có:

            DB=EC(gt)

           \(\widehat{ABD}\)=\(\widehat{ACE}\)(gt)

=>t.giác DHB=t.giác EKC(CH-GN)

=>DH=EK

a: Xét ΔCAB và ΔCED có

CA=CE

góc ACB=góc ECD

CB=CD

=>ΔCAB=ΔCED

b: Xét ΔABH vuông tại H và ΔEDK vuông tại K có

AB=ED

góc ABH=góc EDK

=>ΔABH=ΔEDK

 

Mình làm phần d) thôi nhé!

Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:

Tam giác ABI = Tam giác ACI)

mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)

=>\(\widehat{AIB}=\widehat{AIC}=90\)

Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:

\(AB^2=AI^2+BI^2\)(1)

Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:

\(AI^2=AD^2+DI^2\)(2)

Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:

\(BI^2=DI^2+BD^2\)(3)

Thay (2),(3) vào (1) ta có được:

\(AB^2=AD^2+DI^2+DI^2+BD^2\)

(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)