Cho pt: (2m-1)x-4m+3=0 ( m là tham số) Tìm giá trị của m để pt nhận x=1/2 là nghiệm Em cần gấp ạ!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)
--> Phương trình luôn có 2 nghiệm phân biệt
--> Không có giá trị m để pt vô nghiệm
a, Thay m = 1 vào pt trên ta được
\(x^2+x-1=0\)
\(\Delta=1-4\left(-1\right)=1+5>0\)
Vậy pt luôn có 2 nghiệm pb
\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)
b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )
Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)
hay ko có gtri nào của m để pt vô nghiệm
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
\(\Leftrightarrow\left(m^2+3\right)x-m^2-3-m=\left(3-2m\right)x-5\)
\(\Leftrightarrow\left(m^2+3-3+2m\right)x=m^2+m+3-5\)
\(\Leftrightarrow\left(m^2+2m\right)x=m^2+m-2\)
Pt có tập nghiệm R khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2+2m=0\\m^2+m-2=0\end{matrix}\right.\) \(\Leftrightarrow m=-2\)
Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết
Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
\(\left(2m-1\right)x-4m+3=0\)
Thay \(x=\dfrac{1}{2}\) vào pt trên :
\(\left(2m-1\right).\dfrac{1}{2}-4m+3=0\)
\(\Leftrightarrow m-\dfrac{1}{2}-4m+3=0\)
\(\Leftrightarrow-3m+\dfrac{5}{2}=0\)
\(\Leftrightarrow-3m=-\dfrac{5}{2}\)
\(\Leftrightarrow m=\dfrac{5}{6}\)
Vậy \(m=\dfrac{5}{6}\)