cho tỷ lệ thức \(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh \(\dfrac{\left(a+b+c\right)}{\left(b+c+e\right)}^3\)=\(\dfrac{a}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có VT:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)
\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)
VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Vậy...
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
\(\Rightarrow dpcm\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk\cdot b}=\dfrac{b^2\left(k^2-1\right)}{b^2k}=\dfrac{k^2-1}{k}\)
\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk\cdot d}=\dfrac{d^2\left(k^2-1\right)}{d^2\cdot k}=\dfrac{k^2-1}{k}\)
Do đó: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
b: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{b^2\cdot\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\)
\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left(k+1\right)^2}{k^2+1}\)
Do đó: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
Đẳng thức đầu tiên sai:
Ví dụ: \(a=1;b=2;c=3;d=6\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)
Nhưng \(\dfrac{a.d}{c.d}\ne\dfrac{a^2-b^2}{b^2-d^2}\)
Với đẳng thức thứ 2:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=> \(a=bk\)
\(c=dk\)
Ta có:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2\times k^2+b^2}{d^2\times k^2+d^2}=\dfrac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
=> đpcm
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a.b}{c.d}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+b}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a.b}{c.d}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chứng minh \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{a}{b}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
mà cần chứng minh: \(\left(\dfrac{a+b+c}{b+c+d}\right)=\dfrac{a}{d}\left(2\right)\)
từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\Rightarrow a^3.d=b^3.a\)
\(\Rightarrow a^2.d=b^3\)
vì \(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow a.c=b^2\)
\(\Rightarrow a.b.c=b.c\left(3\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow a.d=b.c\left(4\right)\)
từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow a.a.d=b^3\)
\(\Rightarrow a^2.d=b^3\left(đpcm\right)\)
vậy \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)