Cho tam giác ABC , M là trung điểm BC . Trên tia đối của MA lấy điểm E sao cho ma=me . Cm rằng a tam giác MAC = tam giác MEB b AC = EB , AC//EB cGiả sử AB=BE , chứng tỏ rằng khi đó AM là pg góc BAC d kẻ mn vuông góc vơi ab , kẻ mp vuông góc với ce , chứng minh m là trung điểm np Kẻ hình với nhaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
\(a,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMC}=\widehat{BME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta EMB\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMB}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{MAB}=\widehat{MEC}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\left\{{}\begin{matrix}\widehat{MAI}=\widehat{MEK}\\AM=ME\\KE=AI\end{matrix}\right.\Rightarrow\Delta AMI=\Delta EMK\left(c.g.c\right)\\ \Rightarrow\widehat{AMI}=\widehat{EMK}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và }A,M,E\text{ thẳng hàng nên }I,M,K\text{ thẳng hàng}\)
a, Xét hai tam giác AMC và tam giác BME, ta có:
AM=ME (giả thiết)
góc BME= góc AMC (2 góc đối đỉnh)
BM=MC (M là trung điểm của BC)
Suy ra: tam giác AMC= tam giác BME (c.g.c)
=> AC=BE (hai cạnh tương ứng) (ĐPCM)
=>góc MAC= góc MEB (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)
b, Xét tam giác AMI và tam giác EMK, ta có:
KE=AI (giả thiết)
góc CAM= góc EMK(chứng minh trên)
AM=Me ( giả thiết)
Suy ra: tam giác AMI= tam giác EMK(c.g.c)
=> góc AMI= góc EMK (2 góc tương ứng)
Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)
Do đó: góc IME+ góc EMK= 180 độ
Hay 3 điểm I,M,K thẳng hàng (ĐPCM)
c, Vì góc HME là góc ngoài của tam giác BME nên:
HME= MBE+ MEB
= 50 độ+ 25 độ
= 75 độ
Xét tam giác vuông có H1= 90 độ, ta có
HME+HEM= 90 độ
=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ
Theo định lí tổng 3 góc trong tam giác BME, ta có:
BME+ MBE+ BEM= 180 độ
=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ
Vậy HEM=15 độ
BME= 105 độ
a/
-Xét tam giác ACM và tam giác EBM, có:
CM=MB (gt)
góc AMC = góc EMB ( đối đỉnh )
AM=ME ( gt)
=> tam giác ACM và tam giác EBM bằng nhau ( c.g.c )
=> AC=EB
- Theo chứng minh trên
=> góc ACM = góc MBE ( hai góc so le trong )
=> AC song song BE.
b) ( câu này ko bik nhé)
c)
ta có góc BME = 180 -50-25
= 105 độ.
góc HEM = góc MHE - góc HME
=90- 105 (??????)
Cậu xem lại đề nhé.
a: Xet ΔMAC và ΔMEB co
MA=ME
góc AMC=góc EMB
MC=MB
=>ΔMAC=ΔMEB
b: ΔMAC=ΔMEB
=>góc MAC=góc MEB và AC=EB
=>AC//EB
c: Xét tứ giác ABEC có
AC//EB
AC=EB
=>ABEC là hình bình hành
mà AB=BE
nên ABEC là hình thoi
=>AM là phân giác của góc BAC
d: Xét ΔMNB vuông tại N và ΔMPC vuông tại P có
MB=MC
góc MBN=góc MCP
=>ΔMNB=ΔMPC
=>MN=MP và góc NMB=góc PMC
=>góc NMB+góc BMP=180 độ
=>N,M,P thẳng hàng
mà MN=MP
nên M là trung điểm của NP