Cho tam giác ABC cân tại A A) Biết  = 80% Tính B , C B) Biết gốc B =65% Tính Â
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé.
B=C=50 độ
Ta có BE =CD
Tam giác AEB=ADC C-g-c=> AE=AD => tam giác AED cân => E=D
Đặt BAC =x=CAD
xét tam giác AED có A=80-2x
E =80-x =CAE ( vì CAE cân tại C)
Mà A+E+D =180 => 80-2x + 2(80-x) =180 => x =15
=> góc EAD = 80 -2x =80-30 =50 độ
DS: 50 độ
Ta có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
Vì trong tam giác cân, hai góc kề một đáy bằng nhau
\(\Rightarrow\widehat{B}=\widehat{C}=70^o\)
\(\Rightarrow\widehat{A}=180^o-\left(70^o+70^o\right)=180^o-140^o=40^o\)
Vậy \(\widehat{A}=40^o\)
Ta có: tam giácABC cân tại A
->góc B =góc C(T/C của tam giác cân)
mà góc B =70o
->Góc C =góc B=70o
Ta có :
góc A +góc B +góc C=180o(đ/l tổng 3 góc của một tam giác)
->góc A=180o-(góc B + góc C)
=180O - (70O X 2)
=40O
=>góc A =40O
a: Xét ΔABC có
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(10^2+15^2-BC^2=2\cdot10\cdot15\cdot cos80\)
=>\(BC^2=325-300\cdot cos80\)
=>\(BC\simeq16,52\left(cm\right)\)
b: Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{15}{sinB}=\dfrac{10}{sinC}=\dfrac{16.52}{sin80}\)
=>\(\left\{{}\begin{matrix}sinB=\dfrac{15\cdot sin80}{16.52}\simeq0.89\\sinC\simeq0.6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}\simeq63^0\\\widehat{C}\simeq57^0\end{matrix}\right.\)
Trên BC lấy E sao cho BD=BE,nối E với D,E với A
Ta có:\(\widehat{DBE}=\widehat{DBA}+\widehat{ABC}=\frac{180^0-140^0}{2}+\frac{180^0-100^0}{2}=20^0+40^0=60^0\)
Mà tam giác DBE có BD=BE nên tam giác DBE đều
Suy ra BD=DE=BE
Mà BD=AD nên BD=AD=DE=BE suy ra tam giác ADE cân tại D
\(\Rightarrow\widehat{DEA}=\widehat{DAE}=\frac{\left(180^0-\left(140^0-60^0\right)\right)}{2}=50^0\)
\(\Rightarrow\widehat{CEA}=180^0-\widehat{AED}-\widehat{DEB}=180^0-50^0-60^0=70^0\)
\(\Rightarrow\widehat{CAE}=180^0-\widehat{CEA}-\widehat{ACE}=180^0-70^0-40^0=70^0=\widehat{CEA}\)
Suy ra tam giác ACE cân tại C suy ra CA=CE.
Khi đó ta có: \(BC=BE+EC=BD+AC\Rightarrow a=BD+b\Rightarrow BD=a-b\)
Chu vi tam giác ADB là AD+BD+AB=2.BD+AC=2.(a-b)+b=2a-2b+b=2a-b
Vậy chu vi tam giác ADB là 2a-b
Bài 2:
\(\widehat{ADB}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)
\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)
\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)
\(\Leftrightarrow\widehat{C}=40^0\)
hay \(\widehat{B}=60^0\)
=>\(\widehat{BAC}=80^0\)
a: góc B=góc C=(180-80)/2=50 độ
b: góc A=180-2*65=50 độ