chứng tỏ rằng sô
0,7(2013^2017+2017^2013) là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.
Xét dãy 2014 số 2012;20122012;...;20122012...2012(2014 bộ)
Vì có 2014 số mà khi chia cho 2013 chỉ có thể nhận 2013 số dư nên có 2 số trong dãy cùng số dư khi chia cho 2013
Giả sử 2 số đó là 20122012...2012(n bộ;0<n<2015) và 20122012...2012(m bộ;0<m<2015) với n>m
Khi đó 20122012...2012-20122012...2012 chia hết cho 2013
n m
<=>20122012...2012 00...0 chia hết cho 2013
n-m 4m
<=>20122012...2012*(10^(4m)) chia hết cho 2013
Mà (10^(4m);2013)=1
=>20122012...2012 chia hết cho 2013 (đpcm)
a. Ta có :
\(\frac{\left(2017^{2018}-2017^{2017}\right)}{2017^{2016}}=\frac{2017^{2017}\cdot\left(2017-1\right)}{2017^{2016}}=2017\cdot2016\)
VẬY A CÓ CHỮ SỐ TẦN CỤNG LÀ 2
b. Đề có sai không bạn ví dụ 909 có 2 chữ số giống nhau và là số tự nhiên nhưng đâu chia hết cho 37 đâu
Ko chứng tỏ đc thì chứng tỏ nó sai ! Bạn biết làm cách đấy ko ?
th1 n là số lẻ
nếu n là số lẻ thì n+2017 là số chẵn nên (n+2016).(n+2017)là 1 số chẵn
th2 n là số chẵn
nếu n là số chẵn thì n+2016 là số chẵn nên (n+2016).(n+2017)là 1 số chẵn