K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: DB=DC(hai cạnh tương ứng)

b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)

Suy ra: DH=DK(hai cạnh tương ứng)

a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD

b: ta có: AD=HD

mà HD<DC

nen AD<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có

BH=BA

góc HBK chung

Do đó:ΔBHK=ΔBAC
Suy ra BK=BC

hay ΔBKC cân tại B

24 tháng 1 2021

Cho tam giác ABC vuông tại A tia phân giác của góc ABC cắt AC tại D trên cạnh BC lấy điểm K sao cho ba = BC Chứng minh tam giác Bac bằng tam giác BCD và ck vuông góc với BC

 

24 tháng 7 2021

a) Xét Δ ADB vuông  và ΔBHD vuông có:

             BD là cạnh chung

∠ ABD = ∠ HBD ( do BD là tia phân giác của ∠ BAC, H ∈ BC )

Do đó: Δ ADB = Δ BHD( ch - gn )

⇒ AD = DH ( hai cạnh tương ứng )

b) Xét Δ ADK và Δ HDC có

      AD=DH ( cmt )

∠ ADK = ∠ HDC ( đối đỉnh )

Vậy: Δ ADK = Δ HDC ( cgv - gn )

⇒ AD = DC ( 2 cạnh tương ứng )

c) Ta có: BK = BA + AK ( do B,A,K thẳng hàng )

              BC = BH + HC ( do B,H,C thẳng hàng )

mà BA = BH ( Δ BAD = ΔBHD)

và AK = HC ( Δ ADK = ΔHDC )

⇒ BK = BC ( 1 )

Xét Δ KBC có BK = BC  ( cmt )  ( 2 )

Từ ( 1 ) và ( 2 ):  ⇒  KBC cân tại B ( định nghĩa tam giác cân )

25 tháng 3 2017

\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
              có:   \(AD\): cạnh chung
                       \(\widehat{ABD}=\widehat{HBD}\)    ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
      \(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
      \(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)

\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có:    \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
            mà \(AD=DH\)                \(\Rightarrow\)\(AD< DC\)(đpcm)

\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có:    \(\widehat{BHK}=\widehat{BAC}=90^0\)     ( gt )
                                                                       \(BH=AB\)                              ( vì \(\Delta ABD=\Delta HBD\))
                                                                        \(\widehat{KBH}\): góc chung                   ( gt )
                                \(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
                                \(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
                                \(\Rightarrow\)\(\Delta KBC\)cân  tại  \(B\)