Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt cạnh AC tại D.Kẻ DM vuông góc với BC tại M a)Gọi giao điểm của DM và AB là E.Chứng minh rằng tam giác BEC cân b)Gọi K là trung điểm của EC.Chứng minh ba điểm B,D,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=9+12+15=36\left(cm\right)\)
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
hok tốt
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = \(\sqrt{225}=15cm\)
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
a) Áp dụng định lý Py-ta-go , xét tam giác vuông BAC có :
AB2 + AC2 = BC2
=> 92 + 122 = BC2
=> 81 + 144= BC2
=> 225 = BC2
=> BC = căn 225
=> BC = 15 cm
b)Xét tam giác ABD và tam giác MBD có :
Góc BAD = góc BMD = 90 độ (1)
BD : cạnh chung (2)
Góc
b) Xét tam giác ABD và tam giác MBD có :
Góc BAD = góc BMD = 90 đô ( GT ) (1)
BD : cạnh chung (2)
Góc ABD = góc BMD ( vì tia BD là tia phân giác ) (3)
Từ (1) ; (2) và (3) => tam giác ABD = tam giác MBD ( cạnh huyền - góc nhọn )
a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)(ΔABC cân tại A)
Do đó: ΔMBD=ΔNCE
b: Ta có: ΔMBD=ΔNCE
=>MB=NC
Ta có: AM+MB=AB
AN+NC=AC
mà MB=NC và AB=AC
nên AM=AN
Xét ΔAMK vuông tại M và ΔANK vuông tại N có
AK chung
AM=AN
Do đó: ΔAMK=ΔANK
a: Xet ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM
Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
b: Xét ΔDAE vuông tại A và ΔDMC vuông tại M co
DA=DM
góc ADE=góc MDC
=>ΔDAE=ΔDMC
=>DE=DC
=>D nằm trên trung trực của EC
mà BK là trung trực của EC
nên B,D,K thẳng hàng