K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2023

\(S=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2019}{3^{2019}}\)

\(3S=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2019}{3^{2018}}\)

\(\Rightarrow3S-S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2018}}-\dfrac{2019}{3^{2019}}\)

\(\Rightarrow2S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2018}}-\dfrac{2019}{3^{2019}}\)

\(\Rightarrow6S=3+1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2017}}-\dfrac{2019}{3^{2018}}\)

\(\Rightarrow4S=3-\dfrac{2020}{3^{2018}}+\dfrac{2019}{3^{2019}}=3-\dfrac{1347}{3^{2018}}< 3\)

\(\Rightarrow S< \dfrac{3}{4}\)

29 tháng 6 2021

Ta có :

B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)

B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\)  (1)

Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\)   (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)

 

Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)

Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)

bài 1 ( 2 điểm ):  a) tìm số tự nhiên X sao cho: \(4\dfrac{3}{5}\) + \(\dfrac{7}{10}\) < X < \(\dfrac{20}{3}\) b) tìm X biết: X - \(2019\dfrac{2}{13}\) = \(3\dfrac{7}{26}\) + \(4\dfrac{7}{52}\) bài 2: (1 điểm): tính \(\dfrac{7,8\text{×}1,001\text{ }\text{×}0,625}{18,2\text{×}0,26\text{×}0,125}\) bài 3 (2 điểm): tìm tất cả các số thập phân khác 0 thỏa mãn: số phần nguyên là số có 1 chữ số, phần thập phân chỉ gồm 2 chữ số giống nhau mà...
Đọc tiếp

bài 1 ( 2 điểm ): 

a) tìm số tự nhiên X sao cho: \(4\dfrac{3}{5}\) + \(\dfrac{7}{10}\) < X < \(\dfrac{20}{3}\)

b) tìm X biết: X - \(2019\dfrac{2}{13}\) = \(3\dfrac{7}{26}\) + \(4\dfrac{7}{52}\)

bài 2: (1 điểm): tính

\(\dfrac{7,8\text{×}1,001\text{ }\text{×}0,625}{18,2\text{×}0,26\text{×}0,125}\)

bài 3 (2 điểm): tìm tất cả các số thập phân khác 0 thỏa mãn: số phần nguyên là số có 1 chữ số, phần thập phân chỉ gồm 2 chữ số giống nhau mà tổng của 2 chữ số đó bằng chữ số ở phần nguyên. Hãy tính tổng các chữ số vừa tìm được.

bài 4: 1 đoàn tàu hỏa dài 85 m qua cầu với vận tốc 54km/giờ. Từ lúc đầu tàu lên cầu đnế lúc toa cuối cùng qua khỏi cầu mất hết 1 phút 15 giây. Hỏi cầu dài bao nhiêu mét?

bài 5: một mảnh vườn hình thang có đáy bé là 36,45 m .Đáy lớn bằng 4/3 đáy bé, chiều cao bằng 2/3 tổng hai đáy. Tính diện tích mảnh vườn đó

bài 6:có bao nhiêu hình chữ nhật trong hình vẽ sau?

bài 7: (1 điểm):

a) điền số thích hợp vào dấu? và giải thích quy luật: 

4, 5, 7, 11,19, ?, ? ....

trong hình vẽ dưới đây có 8 hình vuông nhỏ. Hỏi có bao nhiêu điểm A đến điểm C, men theo cạnh các hình vuông nhỏ, sao cho mỗi đường đều không qua đểm B và có độ dài gấp 6 lần độ dài cạnh hình vuông nhỏ. 

A B C

1
10 tháng 6 2023

Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)

\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)

\(\dfrac{138}{30}< X< \dfrac{200}{3}\)

\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)

Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)

\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)

\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)

\(\Rightarrow X=\dfrac{105381}{52}\)

\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)

\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

=>B<1

=>A>B

16 tháng 7 2023

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

12 tháng 12 2021

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

30 tháng 4

S=P nhé

 

Sửa đề: 2020/1+2019/2+...+1/2020

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\left(1+\dfrac{2019}{2}\right)+\left(1+\dfrac{2018}{3}\right)+...+\dfrac{1}{2020}+1+1}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\dfrac{2021}{2}+\dfrac{2021}{3}+...+\dfrac{2021}{2020}+\dfrac{2021}{2021}}\)

=1/2021