K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

6^2n + 19^n - 2^n+1 = 6^2n + 19^n - 2.2^n = 36^n - 2^n + 19^n -2^n = (36-2) + (19-2)  = 34 + 17

Vì 34 và 17 đều chia hết cho 17. Suy ra 34 + 17 chia hết cho 17. Suy ra M chia hết cho 17

2 tháng 12 2017

Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)

Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)

=> 6n+15-6n-14\(\vdots d\)

\(=> 1\vdots d \)

=> d \(\in Ư(1)=(1)\)

Vậy d=1

9 tháng 8 2018

Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .

Gọi d=ƯCLN(3n-1;2n-1)

=>2(3n-1)-3(2n-1) chia hết cho d

\(\Leftrightarrow6n-2-6n+3⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>3n-1/2n-1 là phân số tối giản

1 tháng 12 2015

Ta co :

 n(n+1)(2n+1)

= n(n+1)(n+2+n-1)

=n(n+1)(n+2)+(n-1)(n+1)n  

3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3

Vay  tổng trên chia hết cho 6

**** nhe  avt382267_60by60.jpg đặng kiều oanh

1 tháng 12 2015

Ta co :

 n(n+1)(2n+1)

= n(n+1)(n+2+n-1)

=n(n+1)(n+2)+(n-1)(n+1)n

3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3

Vay  tổng trên chia hết cho 6

21 tháng 4 2023

Gọi ƯCLN (n+1,2n+3) = d (d∈N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

2n+3 ⋮ d

=>(2n+3)-(2n+2)⋮d => d=1

=> ƯCLN(n+1,2n+3) = 1

=> Phân số n+1/2n+3 tối giản (đpcm)

19 tháng 9 2018

a,n(2n-3)-2n(n+1)

=2n2-3n-2n2-2n

=-5n⋮5

b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a;a+1;a+2 là ba số liên tiếp

nên \(A⋮3!\)

hay A chia hết cho 6