cho tam giác CDE,góc C=90 độ, CD<CE, đường cao CI
a. CM: CDI đồng dạng EDC
CM: CE.CE=EI.ED
b. CM: CI.CI=ID.IE
c. phân giác góc CDE cắt CI và CE tại M và N. CM: tam giác CMN cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi bạn ơi, trên tia CB lấy đ E để CE = CB thì làm sao mà kẻ bằng đc.
Phải sửa" trên tia CB" thành "trên tia đối của tia CB"
Đúng ko?
Theo bài ra ta có hình sau:
Xét \(\Delta ABC\)và\(\Delta DEC\), ta có:
\(BC=CE\)\(\left(GT\right)\)
\(AC=CD\)\(\left(GT\right)\)
Góc \(BCA\)= góc \(DCE\)( 2 góc đối đỉnh )
\(\Rightarrow\Delta ABC=\Delta DEC\)\(\left(C.G.C\right)\)
\(\Rightarrow\)Góc \(A\)= góc \(D\)
\(\Rightarrow\)Góc \(CDE=90^o\)
Đáp số: \(CDE=90^o\)
Hình bạn tự vẽ nhé!
Xét tam giác ABC và tam giác DEC có:
CB = CE (gt)
góc BCA = góc ECD ( đối đỉnh)
CA = CD (gt)
=> Tam giác ABC = Tam giác DEC (c.g.c)
=> góc CAB = góc CDE (2 góc tương ứng)
mà góc CAB = 90 độ
=> góc CDE = 90 độ.
Vậy góc CDE = 90 độ
xét tg abc và tg edc có
bc = ec ( gt )
góc bca = góc dce ( 2 góc đối đỉnh )
ac = dc
abc = edc
suy ra góc bac = góc cde = 90 độ
nhớ tick cho mk nha, mk sẽ trả lười câu hỏi này giúp bn:hjhj
Xét tam gjac ABC và tam gjac ECD:
AC=CD (giả thiết)
BC=CE (giả thiết)
góc ACB=góc ECD
Do đó tam gjac ABC=tam gjac ECD (c.g.c)
\(\Rightarrow\)góc A= góc D = 90o (vì 2 tam gjac = nhau có các góc tương ứng = nhau ).
Vậy góc CDE= 90o (góc vuông)
hjhj đây lak cách gjai của mk đó.
a: Xét ΔCDI vuông tại I và ΔEDC vuông tại C có
góc D chung
=>ΔCDI đồng dạng với ΔEDC
Xét ΔECD vuông tại C có CI là đường cao
nên EC^2=EI*ED
b: Xét ΔECD vuông tại C có CI là đường cao
nên CI^2=IE*ID
c: góc CNM=90 độ-góc CDN
góc CMN=góc IMD=90 độ-góc EDN
mà góc CDN=góc EDN
nên góc CNM=góc CMN
=>ΔCMN cân tại C