Cho Δ ABC vuông tại A , kẻ AH BC ( H ϵBC ) . tia phân giác của góc HAC cắt BC tại D . qua D kẻ DK AC ( K ∈ AC )
a ) CMR : ΔHAD = ΔKAD
b ) CM : Δ BAD cân
c ) tia phân giác của góc BAH cắt BC tại E . CM : AB+AC = BC+DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)
a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
góc CAD=góc DAH
=>góc BAD=góc BDA
=>ΔBAD cân tại B
1: Sửa đề: ΔAHD=ΔAKD
Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
2: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: DK=DC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: AH=AK
DH=DK
=>AD là trung trực của HK
c: Gọi M là giao của DK với AH
Xét ΔAMC có
MK,CH là đường cao
MK cắt CH tại D
=>D là trực tâm
=>AD vuông góc MC
mà AD vuông góc CE
nên C,M,E thẳng hàng
=>AH,KD,CE đồng quy tại M
mot mieng dat hinh tam giac co day la 15m va chieu cao la 7,8m nay nguoi ta mo rong mieng dat ve ben phai bang cach keo dai canh day them 3,5m hay tinh dien h manh dat sau khi mo rong
a: Xét ΔHAD vuông tại H và ΔKAD vuông tại K có
AD chung
góc HAD=goc KAD
=>ΔHAD=ΔKAD
b: góc BAD+goc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B