cho a,b,c la do dai 3 cach cua mot tam giac cmr 1/a+b-c+1/b+c-a+1/c+a-b>=1/a+1/b+1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa VP = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì a, b, c là độ dài ba cạnh của một tam giác
=> a, b, c > 0
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)( cái này bạn tự chứng minh nhé ) ta có :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)
TT : \(\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{4}{a+c-b+b+c-a}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Cộng theo vế ta có :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow2\left(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)( đpcm )
Đẳng thức xảy ra ⇔ a = b = c
Từ a3 + b3 + c3 = 3abc
<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
=> tam giác đó là tam giác đều
b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
CM đúng (tự cm tđ)
Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)
Dấu "=" xảy ra <=> x = y = z = 1/3
a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0
Ta có : a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0
Xét TH còn lại ta có :
a2 + b2 + c2 - ab - ac - bc = 0
<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
=> Tam giác đó là tam giác đều ( đpcm )
Ta có:
\(BĐT\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
\(\Leftrightarrow4a^2b^2-\left(a^2+b^2\right)^2+2c^2\left(a^2+b^2\right)-c^4>0\)
\(\Leftrightarrow\left(2ab\right)^2-\left[\left(a^2+b^2\right)^2-2c^2\left(a^2+b^2\right)+\left(c^2\right)^2\right]>0\)
\(\Leftrightarrow\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2>0\)
\(\Leftrightarrow\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)>0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a+b\right)^2\right]>0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a+b-c\right)\left(c+b-a\right)\left(c+a-b\right)>0\) (1)
Vì a,b,c lần lượt là độ dài 3 cạnh của tam giác
\(\Rightarrow\left(1\right)\) đúng
Vậy \(a^4+b^4+c^4< 2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Dòng thứ 5 dưới lên là \(c^2-\left(a-b\right)^2\) nhé.
Láo toét dám đăng bài của tạp chí Toán học và tuổi trẻ lên đây để hỏi hả ! Số mới ra mà hỏi thế này thì còn tính gì ! Khôn vừa thôi........
Khó quá ! Tớ giải không nổi! Với lại mình mới lớp 5 thôi! Tk nha!
Ai có níc olm bỏ thì cho mình với!