K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

Ta có:
\(\dfrac{x}{10}=\dfrac{y}{5}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}\)  \(\left(1\right)\)
\(\dfrac{y}{2}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\)  \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)
Lại có:
\(\dfrac{z}{15}=\dfrac{4z}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{4z}{60}=\dfrac{x+4z}{20+60}=\dfrac{240}{80}=3\)
\(\Rightarrow x=3\cdot20=60\)
     \(y=3\cdot10=30\)
     \(z=3\cdot15=45\)

10 tháng 5 2022

2. There used to have many old buildings 10 years ago

3. I wish a new mall didn't build

4. I have had this wardrobe since my wedding day

5. She hasn't been seen for two years

10 tháng 5 2022

 

2. There used to be many old buildings 10 years ago.

3. I wish a new mall weren't built here.

4. I have bought this wardrobe since my wedding day.

5. She hasn't been seen (by me) for two years.

27 tháng 5 2022

câu 6: bài học: hãy là chính mình, biết sống hết mình, làm tốt những trách nhiệm, bổn phận của bản thân sẽ được mọi người tôn trọng, yêu quý

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:

$\frac{x-2y}{3z}$ có thể nhận giá trị lớn nhất nếu $x$ lớn nhất và $y,z$ nhỏ nhất có thể.

$x$ lớn nhất có thể nhận là $14$ (theo điều kiện)

$y,z$ nhỏ nhất có thể nhận là $1,2$ (do $y,z$ phân biệt)

Nếu $x=14, y=1,z=2$ thì $\frac{x-2y}{3z}=2$

Nếu $x=14; y=2, z=1$ thì $\frac{x-2y}{3z}=\frac{10}{3}>2$

Đáp án D.

7 tháng 1 2022

16C

17A

18B

19D

20C

21C

22A 

7 tháng 1 2022

16 C

17 A

18 B

19 D

20 C

21 C

22 A 

27 tháng 5 2022

\(x+\sqrt{4-x^2}=2\)

\(\Leftrightarrow4-x^2=\left(2-x\right)^2\)

\(\Leftrightarrow4-x^2=4-8x+x^2\)

\(\Leftrightarrow4-x^2-4+8x-x^2=0\)

\(\Leftrightarrow8x-2x^2=0\)

\(\Leftrightarrow2x\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

28 tháng 5 2022

\(x+\sqrt{1-x^2}=1\)

\(\Leftrightarrow1-x^2=\left(1-x\right)^2\)

\(\Leftrightarrow1-x^2=1-2x+x^2\)

\(\Leftrightarrow1-x^2-1+2x-x^2=0\)

\(\Leftrightarrow2x-2x^2=0\)

\(\Leftrightarrow2x\left(1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)